K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 5 2018

Cứ chọn 3 điểm không thẳng hàng bất kì ta được một tam giác.

Việc lập các tam giác chính là chọn 3 điểm trong tập hợp 6 điểm đã cho và chính là tổ hợp chập 3 của 6.

Vậy có: 

Giải bài 6 trang 55 sgk Đại số 11 | Để học tốt Toán 11 cách lập.

25 tháng 3 2019

Đáp án là B

Cứ 3 điểm phân biệt không thẳng hàng tạo thành một tam giác.

Lấy 3 điểm bất kỳ trong 6 điểm phân biệt thì số tam giác cần tìm chính là một tổ hợp chập 3 của 6 phần tử (điểm).

Như vậy, ta có C 6 3 = 20  tam giác.

3 tháng 4 2017

Mỗi tập con gồm 3 điểm (không phân biệt thứ tự) của tập hợp 6 điểm đã cho xác định duy nhất một tam giác. Từ đó ta có: số tam giác có thể lập được (từ 6 điểm đã cho) là:

C36 = = 20 (tam giác)


9 tháng 9 2019

- Chọn 3 điểm trong 18 điểm đã cho làm 3 đỉnh của một tam giác. Mỗi tam giác là một tổ hợp chập 3 của 18. Vì vậy số tam giác là C183 (chọn phương án B)

2 tháng 1 2020

Chọn A

Ta chọn bất kì 3 điểm trong 18 điểm đã cho thì tạo thành một tam giác.

Do đó số tam giác được tạo thành là số cách chọn 3 điểm phân biệt bất kỳ (không kể thứ tự) từ 18 điểm đã cho.

Vậy có tất  C 18 3  tam giác.   

30 tháng 8 2015

15 hình                       

30 tháng 8 2015

mk nghĩ là 15 hình đó bn

2 tháng 12 2021

undefined

Xét điểm thứ nhất (A)(A) nối với 5 điểm còn lại (B,C,D,E,FB,C,D,E,F) tạo thành 5 đoạn thẳng

Vì mỗi đoạn thẳng được tô chỉ màu đỏ hoặc xanh, nên theo nguyên lí Dirichlet có ít nhất ba trong năm đoạn nói trên cùng màu. Giả sử 3 đoạn cùng màu là đoạn AB,AC,AD có 2 trường hợp:

Đoạn AB,AC,ADAB,AC,AD màu xanh tạo thành ΔABC,ABD,BCD,ABDΔABC,ABD,BCD,ABD có đỉnh thuộc cạnh màu xanh

Nếu ngược lại 3 đoạn màu đỏ thì tạo thành ΔABC,ABD,BCD,ABDΔABC,ABD,BCD,ABD có đỉnh thuộc cạnh màu đỏ.

Vậy ta có điều phải chứng minh.

2 tháng 12 2021

Xét điểm thứ nhất (A)(A) nối với 5 điểm còn lại (B,C,D,E,FB,C,D,E,F) tạo thành 5 đoạn thẳng

Vì mỗi đoạn thẳng được tô chỉ màu đỏ hoặc xanh, nên theo nguyên lí Dirichlet có ít nhất ba trong năm đoạn nói trên cùng màu. Giả sử 3 đoạn cùng màu là đoạn AB,AC,AD có 2 trường hợp:

Đoạn AB,AC,ADAB,AC,AD màu xanh tạo thành ΔABC,ABD,BCD,ABDΔABC,ABD,BCD,ABD có đỉnh thuộc cạnh màu xanh

Nếu ngược lại 3 đoạn màu đỏ thì tạo thành ΔABC,ABD,BCD,ABDΔABC,ABD,BCD,ABD có đỉnh thuộc cạnh màu đỏ.

Vậy ta có điều phải chứng minh.

8 tháng 3 2020

hello

8 tháng 3 2020

a, Vẽ được số đoạn thẳng đi qua các điểm đã cho là:

6 . ( 6 - 1 ) : 2 = 15 (đoạn thẳng)

b, Với mỗi đoạn thẳng , nối 2 đầu của đoạn thẳng này với 1 điểm khác ta được 1 tam giác.

Cố định 1 đoạn thẳng trong 15 đoạn thẳng , nối 2 đầu của đoạn thẳng này với 4 điểm còn lại ta được 4 tam giác . Có 15 đoạn thẳng như vậy nên có tất cả: 

            15 . 4 = 60 (tam giác)

Nhưng mỗi tam giác đã được tính  ba lần nên số các tam giác tạo được từ 6 điểm này là:

60 : 3 = 20 (tam giác)

                                Đ/S

# HOK TỐT #

19 tháng 2 2019

25 tháng 3 2018

Đáp án A.

Ta có 3TH.

+) TH1: 2 trong số 4 điểm A1, A2, A3, A4 tạo thành 1 cạnh, suy ra có C 4 2 . 6 = 36 tam giác.

+) TH2: 1 trong số 4 điểm A1, A2, A3, A4 là 1 đỉnh của tam giác, suy ra có 4 C 6 2 = 60 tam giác.

+) TH3: 0 có đỉnh nào trong 4 điểm A1, A2, A3, A4 đỉnh của tam giác có C 6 3 = 20 tam giác. Suy ra có 36 + 60 + 20 = 116 tam giác có thể lập được.