K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 1 2016

bc - ab + ac - aa = -1

=> b.(c - a) + a.(c - a) = -1

=> (c - a) . (b + a) = -1

=> (c - a) . (b + a) = -1.1 = 1.(-1)

+) c - a + b + a  = b + c = -1 + 1 = 0

=> b, c đối nhau

+) c - a + b + a = b + c = 1 + (-1) = 0

=> b, c đối nhau

Vậy b, c là 2 số đối nhau.

18 tháng 1 2016

bạn nhấn vào  đúng 0 sẽ ra đáp án

15 tháng 1 2017

hãy giúp mình với thứ 2 mình kiểm tra 1 tiết rùi

4 tháng 4 2021

sửa lại rồi nhé bạn,tui nhầm

NV
5 tháng 10 2021

Đặt \(\left(a;b;c\right)=\left(\dfrac{y}{x};\dfrac{z}{y};\dfrac{x}{z}\right)\)

\(\Rightarrow VT=\dfrac{1}{\dfrac{y}{x}\left(\dfrac{z}{y}+1\right)}+\dfrac{1}{\dfrac{z}{y}\left(\dfrac{x}{z}+1\right)}+\dfrac{1}{\dfrac{x}{z}\left(\dfrac{y}{x}+1\right)}\)

\(VT=\dfrac{x}{y+z}+\dfrac{y}{z+x}+\dfrac{z}{x+y}=\dfrac{x^2}{xy+xz}+\dfrac{y^2}{xy+yz}+\dfrac{z^2}{xz+yz}\)

\(VT\ge\dfrac{\left(x+y+z\right)^2}{2\left(xy+yz+zx\right)}\ge\dfrac{3\left(xy+yz+zx\right)}{2\left(xy+yz+zx\right)}=\dfrac{3}{2}\)

NV
22 tháng 12 2020

\(VT=\dfrac{a\left(a+b+c\right)+bc}{b+c}+\dfrac{b\left(a+b+c\right)+ca}{c+a}+\dfrac{c\left(a+b+c\right)+ab}{a+b}\)

\(VT=\dfrac{\left(a+b\right)\left(a+c\right)}{b+c}+\dfrac{\left(a+b\right)\left(b+c\right)}{c+a}+\dfrac{\left(a+c\right)\left(b+c\right)}{a+b}\)

Ta có:

\(\dfrac{\left(a+b\right)\left(a+c\right)}{b+c}+\dfrac{\left(a+b\right)\left(b+c\right)}{c+a}\ge2\left(a+b\right)\)

Tương tự: \(\dfrac{\left(a+b\right)\left(a+c\right)}{b+c}+\dfrac{\left(a+c\right)\left(b+c\right)}{a+b}\ge2\left(a+c\right)\)

\(\dfrac{\left(a+b\right)\left(b+c\right)}{a+c}+\dfrac{\left(a+c\right)\left(b+c\right)}{a+b}\ge2\left(b+c\right)\)

Cộng vế với vế:

\(\Rightarrow VT\ge2\left(a+b+c\right)=2\)

Dấu "=" xảy ra khi \(a=b=c=\dfrac{1}{3}\)

3 tháng 3 2022

ko hỉu 

 

17 tháng 7 2021

áp dụng BĐT Bunhiacopxky

\(=>\left(a+b+c\right)^2\le3\left(a^2+b^2+c^2\right)\)

\(=>3\left(a^2+b^2+c^2\right)\ge1^2\)

\(=>a^2+b^2+c^2\ge\dfrac{1}{3}\left(đpcm\right)\)

dấu"=" xảy ra<=>\(a=b=c=\dfrac{1}{3}\)

NV
2 tháng 8 2021

\(\dfrac{1}{1+a^2}+\dfrac{1}{1+b^2}=\dfrac{a^2+b^2+2}{a^2b^2+a^2+b^2+1}=1-\dfrac{a^2b^2-1}{a^2b^2+a^2+b^2+1}\ge1-\dfrac{a^2b^2-1}{a^2b^2+2ab+1}=\dfrac{2}{ab+1}\)

Dấu "=" xảy ra khi \(a=b\) hoặc \(ab=1\)

2 tháng 8 2021

\(< =>VT< =>\dfrac{a^2+b^2+2}{\left(1+a^2\right)\left(1+b^2\right)}=\dfrac{a^2+b^2+2}{a^2+a^2b^2+b^2+1}\)

\(VT\ge VP\)(giả thiết)

\(< =>\dfrac{a^2+b^2+2}{a^2+a^2b^2+b^2+1}\ge\dfrac{2}{1+ab}\)

\(< =>a^2+b^2+2+a^3b+ab^3+2ab-2a^2-2b^2-2a^2b^2-2\ge0\)

\(< =>\left(a-b^{ }\right)^2\left(ab-1\right)\ge0\)(luôn đúng với mọi a,b là các số thực dương thỏa mãn \(ab\ge1\))

\(\)

21 tháng 2 2023