K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 5 2019

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Áp dụng định lí Pitago vào tam giác vuông ABC ta có :

B C 2 = A B 2 + A C 2 = 3 2 + 4 2  = 25

Suy ra : BC = 5 (cm)

Theo tính chất hai tiếp tuyến giao nhau ta có:

AD = AE

BD = BF

CE = CF

Mà: AD = AB – BD

AE = AC – CF

Suy ra: AD + AE = AB – BD + (AC – CF)

= AB + AC – (BD + CF)

= AB + AC – (BF + CF)

= AB + AC – BC

Suy ra:

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

27 tháng 11 2021

                                                                BÀI LÀM

a, xét tứ giác ADOE có:

góc A= góc E=góc D=90O

mà ta thấy: OE=OD( bán kính = nhau)

vậy tứ giác ADOE là hình vuông (dhnb)

 

 

27 tháng 11 2021

a) Dễ thấy tứ giác AEOD là hình chữ nhật (tứ giác có 3 góc vuông).
Mà OD = OE ( cùng bằng bán kính đường tròn nội tiếp tam giác ABC).
Nên tứ giác AEOD là hình vuông.
b) Gọi H là chân đường vuông góc kẻ từ O xuống BC.

Có SΔABC=SΔOAB+SΔOBC+SΔOAC
                     =12 OD.AB+12 OE.AC+12 OH.BC
                      =12 r.(AB+AC+BC)
                      =12 pr (p là  chu vi của tam giác ABCr là bán kính đường tròn nội tiếp).
 
c) Áp dụng định lý Pi-ta-go ta có: BC=AB2+AC2=10(cm).
Diện tích tam giác ABC là: 12 AB.AC=12 .6.8=24(cm2).
Chu vi tam giác ABC là: 6+8+10=24(cm).
Suy ra: 24=12 .24.rr=2(cm).

5 tháng 6 2021

Gọi F là trung điểm MN.\(C_1\) là tiếp điểm của (P) và (Q).\(FC_1\) cắt AB,AC tại D,E.

\(\Rightarrow\left(P\right),\left(Q\right)\) lần lượt là đường tròn nội tiếp của \(\Delta DBF,\Delta EFC\)

Dễ dàng chứng minh được PQNM là hình chữ nhật (có 3 góc vuông) 

\(\Rightarrow FC_1\bot BC\)

Xét \(\Delta DFB\) và \(\Delta CFE:\) Ta có: \(\left\{{}\begin{matrix}\angle EFC=\angle BFD=90\\\angle ECF=\angle BDF=90-\angle ABC\end{matrix}\right.\)

\(\Rightarrow\Delta DFB\sim\Delta CFE\left(g-g\right)\)

mà bán kính đường tròn nội tiếp \(\Delta DFB,\Delta CFE\) bằng nhau

\(\Rightarrow\Delta DFB=\Delta CFE\Rightarrow DF=FC\Rightarrow\Delta DFC\) vuông cân tại F

Ta có: \(\angle DAC=\angle DFC=90\Rightarrow DAFC\) nội tiếp

\(\Rightarrow\angle FAC=\angle FDC=45\Rightarrow\) AF là phân giác \(\angle BAC\Rightarrow\) đpcmundefined

24 tháng 6 2017

a) tứ giác ADOE là hình vuông

\(\left\{{}\begin{matrix}DAE=90\left(giảthiết\right)\\ODA=90\left(DlàtiếpđiểmcủađườngtrònvớiAB\right)\\OEA=90\left(Elàtiếpđiểmcủađườngtròn\:vớiAC\right)\end{matrix}\right.\)

và OD = OE = R

24 tháng 6 2017

Tính chất hai tiếp tuyến cắt nhau