Phân tích các đa thức sau thành nhân tử:
a) x 3 +2x; b) 3x - 6y;
c) 5(x + 3y)- 15x(x + 3y); d) 3(x-y)- 5x(y-x).
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1A:
a: \(x^3+2x=x\left(x^2+2\right)\)
b: \(3x-6y=3\left(x-2y\right)\)
c: \(5\left(x+3y\right)-15x\left(x+3y\right)\)
\(=5\left(x+3y\right)\left(1-3x\right)\)
d: \(3\left(x-y\right)-5x\left(y-x\right)\)
\(=3\left(x-y\right)+5x\left(x-y\right)\)
\(=\left(x-y\right)\left(5x+3\right)\)
1A. a. x(x2+2)
b. 3(x-2y)
c. 5(x+3y)(1-3x)
d. (x-y) (3-5x)
1B. a. 2x(2x-3)
b.xy(x2-2xy+5)
c. 2x(x+1)(x+2)
d. 2x(y-1)+2y(y-1)=2(y-1)(x-y)
\(a,=\left(x-2y\right)\left(x+2y\right)-2\left(x-2y\right)=\left(x-2y\right)\left(x+2y-2\right)\\ b,=\left(x^2+3y\right)^2-1=\left(x^2+3y-1\right)\left(x^2+3y+1\right)\)
Lời giải:
a. Không phân tích được nữa
b. $x^2(x-y)+4(y-x)=x^2(x-y)-4(x-y)=(x-y)(x^2-4)=(x-y)(x-2)(x+2)$
c. $x^3+2x^2y+xy^2-4x=x(x^2+2xy+y^2-4)$
$=x[(x^2+2xy+y^2)-4]=x[(x+y)^2-2^2]=x(x+y-2)(x+y+2)$
a) \(xy^2-25x=x\left(y^2-25\right)=x\left(y-5\right)\left(y+5\right)\)
b) \(x\left(x-y\right)+2x-2y=x\left(x-y\right)+\left(2x-2y\right)=x\left(x-y\right)+2\left(x-y\right)=\left(x-y\right)\left(x+2\right)\)
c) \(x^3-3x^2-4x+12=\left(x^3-3x^2\right)-\left(4x-12\right)=x^2\left(x-3\right)-4\left(x-3\right)=\left(x-3\right)\left(x^2-4\right)=\left(x-2\right)\left(x-3\right)\left(x+2\right)\)
\(a,=x\left(y^2-25\right)=x\left(y-5\right)\left(y+5\right)\\ b,=x\left(x-y\right)+2\left(x-y\right)=\left(x+2\right)\left(x-y\right)\\ c,=x^2\left(x-3\right)-4\left(x-3\right)=\left(x-2\right)\left(x+2\right)\left(x-3\right)\)
\(a,=2xy\left(2y-x\right)\\ b,=x^2\left(x-4\right)+5\left(x-4\right)=\left(x^2+5\right)\left(x-4\right)\\ c,=\left(x-y\right)\left(x^2-25\right)=\left(x-y\right)\left(x-5\right)\left(x+5\right)\)
c: \(x^2-10x+21=\left(x-3\right)\left(x-7\right)\)
a: \(x^2y+xy^3-xy-y^3\)
\(=xy\left(x-1\right)+y^3\left(x-1\right)\)
\(=y\left(x-1\right)\left(x+y^2\right)\)
\(a) x^2y+xy^3-xy-y^3\\=(x^2y+xy^3)-(xy+y^3)\\=xy(x+y^2)-y(x+y^2)\\=(x+y^2)(xy-y)\\=y(x+y^2)(x-1)\\b)2x^2+5x+8(xem lại đề)\\c)x^2-10x+21\\=x^2-3x-7x+21\\=x(x-3)-7(x-3)\\=(x-3)(x-7)\)
\(a,=xy\left(x+y^2\right)-y\left(x+y^2\right)=y\left(x+y^2\right)\left(x-1\right)\\ c,=x^2-7x-3x+21=\left(x-7\right)\left(x-3\right)\)
a: \(=\dfrac{2}{5}\left(xy-x-y^2+1\right)\)
\(=\dfrac{2}{5}\left[x\left(y-1\right)-\left(y-1\right)\left(y+1\right)\right]\)
\(=\dfrac{2}{5}\left(y-1\right)\left(x-y-1\right)\)
b: \(=x\left(x^2+2xy+y^2-9\right)\)
\(=x\left(x+y-3\right)\left(x+y+3\right)\)
a) =25(xy−x−y2+1)=25(xy−x−y2+1)
=25[x(y−1)−(y−1)(y+1)]=25[x(y−1)−(y−1)(y+1)]
=25(y−1)(x−y−1)=25(y−1)(x−y−1)
b) =x(x2+2xy+y2−9)=x(x2+2xy+y2−9)
=x(x+y−3)(x+y+3)
Bài 1:
a: \(4a^2-6b=2\left(2a^2-3b\right)\)
b: \(m^3n-2m^2n^2-mn\)
\(=mn\left(m^2-2mn-1\right)\)
Bài 1:
a) \(4a^2-6b=2\left(a^2-3b\right)\)
b) \(=mn\left(m^2-2mn-1\right)\)
Bài 2:
a) \(=4\left(u-2\right)^2+v\left(u-2\right)=\left(u-2\right)\left(4u-8+v\right)\)
b) \(=a\left(a-b\right)^3-b\left(a-b\right)^2-b^2\left(a-b\right)=\left(a-b\right)\left[a\left(a-b\right)^2-b\left(a-b\right)-b^2\right]=\left(a-b\right)\left(a^3-2a^2b+ab^2-ab+b^2-b^2\right)=\left(a-b\right)\left(a^3-2a^2b+ab^2-ab\right)\)
Bài 1:
a: \(8x^3-2x=2x\left(4x^2-1\right)=2x\left(2x-1\right)\left(2x+1\right)\)
c: \(-5m^3\left(m+1\right)+m+1=\left(m+1\right)\left(-5m^3+1\right)\)
a) Biến đổi x 3 = x 2 .x, phân tích thành x( x 2 + 2).
b) Tương tự a) phân tích thành 3(x – 2y).
c) Nhân tử chung 5(x + 3y) phân tích thành 5(x + 3y)(1 – 3x).
d) Thực hiện biến đổi y – x = -(x – y), xuất hiện nhân tử chung là (x – y), phân tích thành (x – y)(3 + 5x).