Cho x O y ^ = 60 ° , điểm A thuộc tia phân giác của góc xOy. Kẻ AB ⊥ Ox (B Ox) và AC ⊥ Oy (C ∈ Oy). Tam giác OBC là tam giác gì? Tại sao
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét ΔOBA vuông tại B và ΔOCA vuông tại C có
OA chung
\(\widehat{AOB}=\widehat{AOC}\)
Do đó: ΔOBA=ΔOCA
Suy ra: OB=OC
hay ΔOBC cân tại O
mà \(\widehat{BOC}=60^0\)
nên ΔOBC đều
a: Xét ΔOBA vuông tại B và ΔOCA vuông tại C có
OA chung
\(\widehat{AOB}=\widehat{AOC}\)
Do đó: ΔOBA=ΔOCA
Suy ra: OB=OC và AB=AC
=>ΔBOC cân tại O
b: Xét ΔABE vuông tại B và ΔACD vuông tại C có
AB=AC
\(\widehat{BAE}=\widehat{CAD}\)
Do đó:ΔABE=ΔACD
Suy ra: AE=AD
- Xét 2 tam giác vuông AOC và AOB, ta có :
+ Góc COA bằng góc BOA ( vì OA là tia phân giác của góc xOy )
+ OA là cạnh huyền chung
=> Tam giác AOC bằng AOB ( CH_GN ) => CA = CB ( 2 cạnh tương ứng ) => CAB là tam giác cân tại A
- Trong tam giác cân CAB ta có góc CAB bằng 60 độ ( Vì góc CAO bằng 180 độ trừ cho tổng hai góc AOC + OCA hay nói cách khác là góc CAO = 180 - ( 60 + 90 ) = 30
+ Mà góc CAO bằng góc BAO => góc BAO bằng 30 độ
+ Có ( góc ) CAO + BAO = CAB = 60 độ )
- Vì CAB là tam giác cân có một góc bằng 60 độ suy ra tam giác CAB là tam giác đều
Xét ΔABO vuông tại B và ΔACO vuông tại C có
OA chung
\(\widehat{BOA}=\widehat{COA}\)
Do đó: ΔABO=ΔACO
Suy ra: AB=AC
hay ΔABC cân tại A
mà \(\widehat{CAB}=180^0-120^0=60^0\)
nên ΔABC đều