Cho 1 số tự nhiên có 5 chữ số. Biết rằng khi nhân số đó với 4 thì ta được một số mới, được viết bằng các chữ số của số ban đầu nhưng theo thứ tự ngược lại. Số ban đầu là bao nhiêu? (Nhớ viết cách làm)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi số ban đầu là \(\overline{abcde}\)
ta có :\(\overline{edcba}=4\overline{abcde}\) nên ta có : \(4a\le e\le4a+1\) đồng thời a là số chẵn khác 0 và a và 4e có cùng chữ số cuối cùng nên : \(\hept{\begin{cases}a=2\\e=8\end{cases}}\) vậy ta có \(\overline{8dcb2}=4\overline{2bcd8}\Leftrightarrow\overline{dcb2}=4\overline{bcd8}\Leftrightarrow\overline{dcb}=4\overline{bcd}+3\)
Vế phải là số lẻ nên b là số lẻ mà ta có : \(4b\le d\le4d+1\Rightarrow b=1\)
vậy d=4 hoặc 5
với d=4 ta có : \(\overline{4c1}=4\times\overline{1c4}+3\Leftrightarrow c\text{ âm}\) loại
vậy d=5 và \(\overline{5c1}=4\times\overline{1c5}+3\Leftrightarrow c\text{ thập phân}\) Vậy không tồn tiaji số thỏa mãn
Gọi số cần tìm là \(\overline{abcde}\) Theo đề bài
\(9.\overline{abcde}=\overline{edcba}\) Do \(\overline{edcba}\) là số có 5 chữ số nên \(9.\overline{abcde}\) cũng phải là số có 5 chữ số \(\Rightarrow a=1\Rightarrow e=9\)
\(\Rightarrow9.\overline{1bcd9}=\overline{9dcb1}\Rightarrow90000+90.\overline{bcd}+81=90000+10.\overline{dcb}+1\)
\(\Rightarrow10.\overline{dcb}-90.\overline{bcd}=80\Rightarrow\overline{dcb}-9.\overline{bcd}=8\)
+ Nếu \(d=0\Rightarrow\overline{cb}-9.\overline{bco}=8\Rightarrow b=0\)
\(\Rightarrow\overline{c0}-9.\overline{c0}=8\) (loại)
Vậy \(d\ne0\)
Do \(\overline{dcb}-9.\overline{bcd}=8>0\Rightarrow\overline{dcb}=9.\overline{bcd}+8\Rightarrow b\le1\)
+Nếu \(b=1\Rightarrow\overline{dc1}-9.\overline{1cd}=8\Rightarrow\overline{dc1}=9.\overline{1cd}+8\Rightarrow d=9\)
\(\Rightarrow\overline{9c1}=9.\overline{1c9}\Rightarrow901+10.c=9.109+90.c\Rightarrow80.c=901-9.109< 0\) (loại)
+ Nếu \(b=0\) Từ \(\overline{dcb}-9.\overline{bcd}=8\Rightarrow\overline{dc0}-9.\overline{cd}=8\)
\(\Rightarrow10.\overline{dc}-9.\overline{cd}=8\Rightarrow\overline{cd}=\frac{10.\overline{dc}-8}{9}=\frac{9.\overline{dc}-9+\overline{dc}+1}{9}=\overline{dc}-1+\frac{\overline{dc}+1}{9}\)
Do \(\overline{cd}\) là số nguyên \(\Rightarrow\frac{\overline{dc}+1}{9}\) Phải là số nguyên \(\Rightarrow\overline{dc}=89\) Hoặc \(\overline{dc}=98\)
+ Với \(\overline{dc}=89\) ta có có số cần tìm \(\overline{abcde}=10989\) Thử \(9.10989=98901\) (chọn)
+ Với \(\overline{dc}=98\) ta có số cần tìm là \(\overline{abcde}=10899\) Thử \(9.10899=98091\) (loại)
Kết luận số cần tìm là \(\overline{abcde}=10989\)
Gọi 4 số tự nhiên cần tìm là: abcd
Ta có: abcd*5+6=dcba(1)
abcd=1000a + 100b+ 10c +d(2); dcba=1000d+100c+10b+a
Từ 1,2,3 ta có:
(1000a+100b+10c+d)*5+6=1000d+100c+10b+a
(1000a+100b+10c+d)+6=(1000d+100c+10b+a)/5=200d+20c+2b+0,2a
1000a+100b+10c+d-200d+20c+2b+0,2a=-6
(1000a+0,2a)+(100b+2b)+(10c+20c)+(d+200d)=-6
1000,2a+102b+30c+201d=-6
còn lại là tịt, cũng không biết có đúng k nữa