Tìm x thuộc Z biết:
a, (x+1)+(x+3)+(x+5)+...+(x+99) = 0
b, (x-3)+(x-2)+(x-1)+...+10+11 = 11
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)
\(x+\left(x+2\right)+\left(x+4\right)+...+\left(x+98\right)=0\)
\(x+x+2+x+4+...+x+98=0\)
\(50x+\left(98+2\right).\left[\left(98-2\right):2+1\right]:2=0\)
\(50x+100.49:2=0\)
\(50x+49.50=0\)
\(50x=0-49.50\)
\(50x=-2450\)
\(x=-2450:50\)
\(x=-49\)
b)
\(\left(x-5\right)+\left(x-4\right)+\left(x-3\right)+...+\left(x+11\right)+\left(x+12\right)=99\)
\(x+x+x+...+x-5-4-3-...+11+12=99\)
\(18x+6+7\text{+ 8 + 9 + 10 + 11 + 12 = 99}\)
\(18x+63=99\)
\(18x=99-63\)
\(18x=36\)
\(x=36:18\)
\(x=2\)
Cau so 1: Co tat ca 99 so hang
Tong la [(x+1)+(x+99)].99/2=0
(x+1)+(x+99)=0
2x+100=0
2x=-100
x=-50
Cau so 2 hinh nhu thieu de
(x+1)+(x+3)+...+(x+99)=0
Tổng các số hạng là: (99+1):2=50 (số hạng)
=> (x+1)+(x+3)+...+(x+99)=0 <=> 50.x+(1+3+5+...+99) = 0
<=> 50.x+=0 <=> 50.x+2500=0 => x=-2500/50=-50
a, 28+2x=35-(-13)
=> 2x=35+13-28
=>2x=20
=> x=10. vậy x=10
chúc bn hok tốt k cho mik nha
a) \(\left(x+1\right)+\left(x+3\right)+\left(x+5\right)+..+\left(x+99\right)=0\)
Tổng các số hạng là;
\(\left(99+1\right):2=50\)(số hạng)
\(\left(x+1\right)+\left(x+3\right)+\left(x+5\right)+..+\left(x+99\right)=0\)
\(\Leftrightarrow50x+\left(1+3+..+99\right)=0\)
\(\Leftrightarrow50x+\frac{\left(99+1\right).50}{2}=0\)
\(\Leftrightarrow50x+2500=0\)
\(\Leftrightarrow50x=-2500\)
\(\Leftrightarrow x=\frac{-2500}{50}=-50\)
b) \(\left(x-3\right)+\left(x-2\right)+\left(x-1\right)+..+10+11=11\)
\(\left(x-3\right)+\left(x-2\right)+\left(x-1\right)+..+10=0\)
gọi các số hạng từ ( x-3) đến 10 là n
Ta có; \(\left[10+\left(x-3\right)\right].n:2=0\)
\(\Rightarrow\left(x+7\right).n=0\)
Vì \(n\ne0\)
Nên \(x+7=0\)
\(\Rightarrow x=-7\)
a: \(x\left(x-3\right)+2x-6=0\)
\(\Leftrightarrow\left(x-3\right)\left(x+2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-2\end{matrix}\right.\)
b: \(\left(x+1\right)^2-4\left(x+1\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(x-3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=3\end{matrix}\right.\)