K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 4 2019

Điều kiện: xy > 0

2 x 2 + y 2 + 2 x y = 16 x + y + 2 x y = 16 ⇔ 2 x 2 + y 2 = x + y ⇔ ( x – y ) 2   = 0 ⇔ x = y

Thay x = y vào x + y + x y = 16 ta được

2x + 2|x| = 16 ⇔ x + |x| = 8 ⇒ x = 4 ⇒ y = x = 4

Vậy hệ có một cặp nghiệm duy nhất (x; y) = (4; 4)

Khi đó  x y = 4 4 = 1

Đáp án:D

3 tháng 2 2021

Thay k=1 và HPT ta có: 

\(\left\{{}\begin{matrix}x+y=3.1-2\\2x-y=5\end{matrix}\right.\)

\(\left\{{}\begin{matrix}x+y=1\\2x-y=5\end{matrix}\right.\)

\(\left\{{}\begin{matrix}2x+2y=2\\2x-y=5\end{matrix}\right.\)

\(\left\{{}\begin{matrix}2x+2y=2\\3y=-3\end{matrix}\right.\)

\(\left\{{}\begin{matrix}x=2\\y=-1\end{matrix}\right.\)

Vậy HPT có nghiệm (x;y) = (2;-1)

3 tháng 2 2021

b) tìm k để hệ phương trình có nghiệm ( x ; y) sao cho \(x^2-y-\dfrac{5}{y}+1=4\)

\(\left\{{}\begin{matrix}x+y=3k-2\\2x-y=5\end{matrix}\right.\)

\(\left\{{}\begin{matrix}y=3k-2-x\\2x-\left(3k-2-x\right)=5\end{matrix}\right.\)

\(\left\{{}\begin{matrix}y=3k-2-x\\2x-3k+2+x=5\end{matrix}\right.\)

\(\left\{{}\begin{matrix}y=3k-2-x\\3x=3k+3\end{matrix}\right.\)

\(\left\{{}\begin{matrix}y=3k-2-x\\x=k+1\end{matrix}\right.\)

Ta có \(\text{ x= k+1 }=>y=2k-3\) (*)

Thay vào biểu thức đã cho ở đề bài ta có :

 \(x^2-y-\dfrac{5}{y}+1=4\)

\(\left(k+1\right)^2-2k+3-\dfrac{5}{2k-3}+1=4\)

\(k^2+2k+1-2k+3-\dfrac{5}{2k-3}+1=4\)

Sau một hồi bấm máy tính Casio thì ra k=2

Vậy k=2 thì Thỏa mãn yêu cầu đề bài

 

 

AH
Akai Haruma
Giáo viên
23 tháng 5 2021

** Bạn lưu ý lần sau viết đề bằng công thức toán để được hỗ trợ tốt hơn.

Lời giải:
\(\Leftrightarrow \left\{\begin{matrix} x^2(x^2-2y)=1\\ x^2-2y=2-x^2+y^2\end{matrix}\right.\)

\(\Rightarrow x^2(2-x^2+y^2)=1\)

\(\Leftrightarrow x^2y^2-(x^4-2x^2+1)=0\Leftrightarrow (xy)^2-(x^2-1)^2=0\)

\(\Leftrightarrow xy=x^2-1\) hoặc \(xy=1-x^2\)

TH1: $x^2-1=xy$

Thay vô pt $(1)$: $(x^2-1)(x^2+1)-2x^2y=0$

$\Leftrightarrow xy(xy+2)-2x^2y=0$

$\Leftrightarrow xy(xy+2-2x)=0$

$\Leftrightarrow xy(x^2-1+2-2x)=0$

$\Leftrightarrow xy(x-1)^2=0$

Nếu $x=0$ thì vô lý

Nếu $y=0$ thì $x=\pm 1$

Nếu $(x-1)^2=0\Rightarrow x=1\Rightarrow y=0$

TH2: Tương tự

Vậy $(x,y)=(\pm 1, 0)$

28 tháng 9 2021

\(\Leftrightarrow\left\{{}\begin{matrix}2\left(x+y\right)+3\left(x-y\right)=4\\2\left(x+y\right)+4\left(x-y\right)=10\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x-y=6\\2\left(x+y\right)+24=10\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x-y=6\\x+y=-7\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-\dfrac{1}{2}\\y=-\dfrac{13}{2}\end{matrix}\right.\)

cái phương trình đầu là +1 hay -1

26 tháng 7 2017

hình như là +1 chắc bn này xài laptop gõ dấu + nhưng quên ấn Shift :v

12 tháng 10 2021

c) \(\left\{{}\begin{matrix}2\left(x-2\right)+3\left(1+y\right)=2\\3\left(x-2\right)-2\left(1+y\right)=-3\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}6\left(x-2\right)+9\left(1+y\right)=6\\6\left(x-2\right)-4\left(1+y\right)=-6\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}13\left(1+y\right)=12\\2\left(x-2\right)+3\left(1+y\right)=2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{21}{13}\\y=-\dfrac{1}{13}\end{matrix}\right.\)

d) \(\left\{{}\begin{matrix}\left(x-5\right)\left(y-2\right)=\left(x+2\right)\left(y-1\right)\\\left(x-4\right)\left(y+7\right)=\left(x-3\right)\left(y+4\right)\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}xy-2x-5y+10=xy-x+2y-2\\xy+7x-4y-28=xy+4x-3y-12\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}-x-7y=-12\\3x-y=16\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}-x-7y=-12\\21x-7y=112\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}22x=124\\3x-y=16\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{62}{11}\\y=\dfrac{10}{11}\end{matrix}\right.\)

10 tháng 10 2023

Đặt \(\sqrt{x+3}=a\)\(\sqrt{y+1}=b\) (a,b \(\ge0\))

\(\Rightarrow\left\{{}\begin{matrix}a-2b=2\\2a+b=4\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}2a-4b=4\\2a+b=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}5b=0\\2a+b=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}b=0\\a=2\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}\sqrt{x+3}=2\\\sqrt{y+1}=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\x=-1\end{matrix}\right.\)(tmđk)

Vậy hệ pt có nghiệm suy nhất (x;y) = (1;-1)

  

12 tháng 10 2021

\(\left\{{}\begin{matrix}\left(x-5\right)\left(y-2\right)=\left(x+2\right)\left(y-1\right)\\\left(x-4\right)\left(y+7\right)=\left(x-3\right)\left(y+4\right)\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}xy-2x-5y+10=xy-x+2y-2\\xy+7x-4y-28=xy+4x-3y-12\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x+7y=12\\3x-y=16\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}3x+21y=36\\3x-y=16\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}22y=20\\x+7y=12\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{62}{11}\\y=\dfrac{10}{11}\end{matrix}\right.\)

9 tháng 6 2016

phương trình đầu tương đương với:

\(x\left(x^2+y^2\right)=y^4\left(y^2+1\right)\)

\(\Leftrightarrow x^3+xy^2-y^6-y^4=0\)

\(\Leftrightarrow\left(x^3-y^6\right)+\left(xy^2-y^4\right)=0\)

\(\Leftrightarrow\left(x-y^2\right)\left(x^2+xy^2+y^4\right)+y^2\left(x-y^2\right)=0\)

\(\Leftrightarrow\left(x-y^2\right)\left(x^2+xy^2+y^4+y^2\right)=0\)

TH1: \(x-y^2=0\Rightarrow x=y^2\) thay vào pt thứ hai ta tìm được nghiệm

      \(\sqrt{4y^2+5}+\sqrt{y^2+8}=6\)

       \(4y^2+5+y^2+8+2\sqrt{\left(4y^2+5\right)\left(y^2+8\right)}=36\)

       \(5y^2+13+2\sqrt{\left(4y^2+5\right)\left(y^2+8\right)}=36\)

       \(2\sqrt{\left(4y^2+5\right)\left(y^2+8\right)}=23-5y^2\)

        bình phương hai vế tiếp rồi đưa về pt trùng phương, bạn tự giải tiếp nhé

TH2: \(x^2+xy^2+y^4+y^2=0\), coi x là ẩn, tìm x theo y ta có 

        \(\Delta=y^4-4\left(y^4+y^2\right)=-3y^4-y^2\)

        Pt có nghiệm khi y =0, thay vào ta có từ pt thứ nhất suy ra x =0, nhưng pt thứ hai không thỏa mãn