Tìm giá trị lớn nhất, nhỏ nhất của hàm số sau trên tập xác định của nó
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
- Áp dụng BĐT Bunhia- Cốp xki ta có:
\(\left(\sqrt{x-1}+\sqrt{5-x}\right)^2\le\left(1^2+1^2\right)\left(x-1+5-x\right)\)\(=2.4=8\).
Suy ra: \(\sqrt{x-1}+\sqrt{5-x}\le2\sqrt{2}\).
Vậy max \(\sqrt{x-1}+\sqrt{5-x}=2\sqrt{2}\) khi:
\(\sqrt{x-1}=\sqrt{5-x}\)\(\Leftrightarrow x-1=5-x\)\(\Leftrightarrow x=3\).
- Ta có: \(\sqrt{x-1}+\sqrt{5-x}\ge\sqrt{x-1+5-x}=\sqrt{4}=2\).
Vậy GTNN của \(\sqrt{x-1}+\sqrt{5-x}=2\) khi:
\(\left[{}\begin{matrix}x-1=0\\5-x=0\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=5\end{matrix}\right.\).
Đáp án B.
Ta có
y = sin 3 x − 1 − 2 sin 2 x + s inx + 2 = t 3 + 2 t 2 + t + 1 t = s inx ∈ − 1 ; 1 .
Khi đó t ∈ − 1 ; 1 f ' t = 3 t 3 + 4 t + 1 = 0 ⇔ t = − 1 3 .
Tính f − 1 = 1 ; f 1 = 5 ; f − 1 3 = 23 27 .
Vế phải có nghĩa khi 1 ≤ x ≤ 5
Vậy giá trị lớn nhất của hàm số đã cho bằng 2 2 khi x = 3, giá trị nhỏ nhất của hàm số đã cho bằng 2 khi x = 1 hoặc x = 5.