K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 9 2018

Chọn B

Đặt  t = x 2 - 2 x  với x ∈ - 3 2 ; 7 2  

 

Bảng biến thiên của hàm số t = x 2 - 2 x  trên đoạn - 3 2 ; 7 2  là: 

Dựa vào bảng biến thiên t ∈ - 1 ;   21 4  

Khi đó phương trình    f ( x 2 - 2 x ) = m  (1) trở thành f(t)=m (2).

Ta thấy, với mỗi giá trị t ∈ ( - 1 ;   21 4 ]  ta tìm được hai giá trị của x ∈ - 3 2 ; 7 2  

Do đó, phương trình (1) có 4 nghiệm thực phân biệt thuộc - 3 2 ;   7 2  khi và chỉ khi phương trình (2) có hai nghiệm thực phân biệt thuộc  ( - 1 ;   21 3 ]    

 Đường thẳng y=m cắt đồ thị hàm số y=f(t) tại hai điểm phân biệt có hoành độ thuộc  - 1 ;   21 4

Dựa vào đồ thị ta thấy chỉ có hai giá trị nguyên của m thỏa yêu cầu là m=3  m=5

10 tháng 12 2017

Đáp án C

28 tháng 3 2017

10 tháng 4 2017

Chọn B

25 tháng 1 2018

Chọn đáp án B

14 tháng 1 2018

Chọn D.

Để phương trình f(x)=m+2 có 4 nghiệm phân biệt thì đường thẳng y=m+2 phải cắt đồ thị hàm số y=f(x) tại 4 điểm phân biệt.

Dựa vào đồ thị ta được -4<m+2<-3 => -6<m<-5

5 tháng 8 2018

+ Trước tiên từ đồ thị hàm số y= f( x) , ta suy ra đồ thị hàm số y = |f(x)| như hình dưới đây: 

Phương trình 2|f(x)| - m = 0 hay  |f(x)| =  m/2 là phương trình hoành độ giao điểm của đồ thị hàm số y = |f(x) và đường thẳng y= m/2.

Dựa vào đồ thị hàm số  y = |f(x)|, ta có ycbt trở thành:

Chọn A.

18 tháng 6 2017

Có 

Phương trình này có hai nghiệm 

• Với  ta cần tìm điều kiện để phương trình này có 4 nghiệm phân biệt thuộc 

Với t = -1 phương trình (1) cho đúng một nghiệm x =  π ; với t = 0 phương trình cho hai nghiệm 

Với mỗi  phương trình cho hai nghiệm thuộc

Vậy điều kiện cần tìm là phương trình (1) phải có hai nghiệm phân biệt 

Chọn B. 

20 tháng 7 2019

15 tháng 4 2017

Đáp án B