K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 4 2018

Đáp án: B

Ta có bảng xét dấu:

Đề kiểm tra 15 phút Đại số 10 Chương 4 có đáp án (Đề 4)

Dựa vào bảng xét dấu ta thấy: f(x) > 0 khi x < -7 hoặc -1 < x < 1 hoặc x > 3

6 tháng 2 2021

a, \(Chof\left(x\right)=0\Rightarrow\left[{}\begin{matrix}x=3\\x=4\end{matrix}\right.\)

- Lập bảng xét dấu :

Vậy \(\left\{{}\begin{matrix}f\left(x\right)>0\Leftrightarrow x\in\left(3;4\right)\\f\left(x\right)< 0\Leftrightarrow x\in\left(-\infty;3\right)\cup\left(4;+\infty\right)\\f\left(x\right)=0\Leftrightarrow x\in\left\{3;4\right\}\end{matrix}\right.\)

b, \(f\left(x\right)=\left(x-1\right)\left(x+6\right)\)

( Làm tương tự câu a )

 

27 tháng 2 2021

Xét f(x) = (1+x)(x-2)2(4-x)

f(x) = 0 \(\Leftrightarrow\) x = -1 hoặc x = 2 hoặc x = 4

ta có bảng

x          \(-\infty\)             -1                2                4                \(+\infty\)

1+x                 -        0       +        |        +       |         +          

(x-2)2             +         |       +        0        +       |         +    

4-x                 +         |       +         |        +       0        - 

f(x)                 -         0       +        0        +       0        -

Chúc bn học tốt

21 tháng 6 2017

a) Ta có: \(x^2\ge0\forall x\in Q\)

\(y^2\ge0\forall x\in Q\)

\(\Rightarrow x^2+y^2+2014\ge2014\forall x\in Q\)

Dấu giá trị nhỏ nhất của biểu thức là 2014, xảy ra khi \(\left\{{}\begin{matrix}x^2=0\\y^2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0\\y=0\end{matrix}\right.\)

b, Ta có: \(\left(x+30\right)^2\ge0\forall x\in Q\)

\(\left(y-4\right)^2\ge0\forall x\in Q\)

\(\Rightarrow\left(x+30\right)^2+\left(y-4\right)^2+17\ge17\forall x\in Q\)

Dấu giá trị nhỏ nhất của biểu thức là 17, xảy ra khi \(\left\{{}\begin{matrix}\left(x+30\right)^2=0\\\left(y-4\right)^2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-30\\y=4\end{matrix}\right.\)

c, Ta có: \(\left(y-9\right)^2\ge0\forall x\in Q\)

\(\left|x-3\right|\ge0\forall x\in Q\)

\(\Rightarrow\left(y-9\right)^2+\left|x-3\right|^2-1\ge-1\forall x\in Q\)

Dấu giá trị nhỏ nhất của biểu thức là -1 xảy ra khi \(\left\{{}\begin{matrix}\left(y-9\right)^2=0\\\left|x-3\right|=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=9\\x=3\end{matrix}\right.\)

21 tháng 6 2017

ghi đề kiểu này khó nhìn quá

5 tháng 1 2016

1)x=-4

2)1007

3)=3

4)=-49

5)ko rõ đề

6)-1 tại x=7

7)y=27

8)ko rõ

5 tháng 1 2016

1/ x = -4

2/ 1007 số hạng

3/  f(2) = 3

4/ 50C = -49

5/ mình ko biết 

6/ -1

7/mình cũng đang cần ai giải giúp câu này nếu có người giải thì nhẵn mình với 

5 tháng 1 2016

1.no biết

2.1007

3.3

4.-49

5.3

6.6,5

7.chịu

8.xhịu nốt