K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 1 2016

\(hpt\Leftrightarrow\int^{8x-8y+4z=2}_{8x+4y+z=8}\Leftrightarrow\int^{12y-3z=6}_{4x=1+y4-2z}\Leftrightarrow\int^{y=\frac{2+z}{4}}_{4x=2+1+z-2z}\Leftrightarrow\int^{y=\frac{2+z}{4}}_{x=\frac{3-z}{4}}\)

Nên A = \(x+y-z=\frac{z+2}{4}+\frac{3-z}{4}-z=\frac{5}{4}-z\)

Vì x ; y ;z là ba số không âm => \(z\ge0\Rightarrow\frac{5}{4}-z\le\frac{5}{4}\)

Vậy MAX A tại 5/4 tại z  = 0 ; y = 1/2 ; x = 3/4 

31 tháng 7 2019

Xét \(5P-\left(12x+10y+15z\right)=5x^2-32x+5y^2-30y+5z^2-20z.\)

                                                              \(=5x\left(x-6,4\right)+5y\left(y-6\right)+5z\left(z-4\right).\)(1)

Mà \(x,y,z\ge0\)nên từ \(12x+10y+15z\le60\)suy ra \(\hept{\begin{cases}12x\le60\\10y\le60\\15z\le60\end{cases}\Leftrightarrow\hept{\begin{cases}x\le5\\y\le6\\z\le4\end{cases}\Rightarrow}}\hept{\begin{cases}x-6,4< 0\\y-6\le0\\z-4\le0\end{cases}\Rightarrow\hept{\begin{cases}x\left(x-6,4\right)\le0\\y\left(y-6\right)\le0\\z\left(z-4\right)\le0\end{cases}.}}\)(2)

Từ (1) và (2) suy ra \(5P-\left(12x+10y+15z\right)\le0\)

\(\Rightarrow P\le\frac{12x+10y+15z}{5}\le\frac{60}{5}=12.\)

Vậy GTLN của P=12, Dấu '=' xảy ra khi \(\hept{\begin{cases}x\left(x-6,4\right)=y\left(y-6\right)=z\left(z-4\right)=0\\12x+10y+15z=60\end{cases}\Leftrightarrow\orbr{\begin{cases}x=y=0;z=4\\x=z=0;y=6\end{cases}.}}\)

2 tháng 4 2024

VT= x2+4y2+z2-4x+4y-8z+23

= (x2-4x+4)+(4y2+4y+1)+(z2-8z+16)+2

= (x-2)2+(2y+1)2+(z-4)2+2>0

vây không tồn tại x,y,z để phương trình trên có nghiệm

23 tháng 10 2023

Ta có:

\(x^2+4y^2+z^2-4x+4y-8z+24=0\)

\(\Leftrightarrow x^2-4x+4+4y^2+4y+1+z^2-8z+16+3=0\)

\(\Leftrightarrow\left(x^2-4x+4\right)+\left(4y^2+4y+1\right)+\left(z^2-8z+16\right)+3=0\)

\(\Leftrightarrow\left(x-2\right)^2+\left(2y+1\right)^2+\left(z-4\right)^2+3=0\)

Mà: \(\left\{{}\begin{matrix}\left(x-2\right)^2\ge0\\\left(2y+1\right)^2\ge0\\\left(z-4\right)^2\ge0\end{matrix}\right.\)

 \(\Rightarrow\left(x-2\right)^2+\left(2y+1\right)^2+\left(z-4\right)^2+3\ge3\ne0\)

Vậy không có số thực x, y, z nào thỏa mãn đẳng thức.

NV
30 tháng 12 2021

\(\sqrt{4x+2\sqrt{x}+1}\le\sqrt{4x+\dfrac{1}{2}\left(2^2+x\right)+1}=\sqrt{\dfrac{9x}{2}+3}\)

\(=\dfrac{1}{\sqrt{21}}.\sqrt{21}.\sqrt{\dfrac{9x}{2}+3}\le\dfrac{1}{2\sqrt{21}}\left(21+\dfrac{9x}{2}+3\right)=\dfrac{1}{2\sqrt{21}}\left(\dfrac{9x}{2}+24\right)\)

Tương tự và cộng lại:

\(A\le\dfrac{1}{2\sqrt{21}}\left(\dfrac{9}{2}\left(x+y+z\right)+72\right)=3\sqrt{21}\)

\(A_{max}=3\sqrt{21}\) khi \(x=y=z=4\)

30 tháng 12 2021

\(A=1\sqrt{4x+2\sqrt{x}+1}+1.\sqrt{4y+2\sqrt{y}+1}+1\sqrt{4z+2\sqrt{z}+1}\)

\(\le\sqrt{\left(1+1+1\right)\left(4\left(x+y+z\right)+2\left(\sqrt{x}+\sqrt{y}+\sqrt{z}\right)+3\right)}\)

\(=\sqrt{3.\left[51+\dfrac{4\left(\sqrt{x}+\sqrt{y}+\sqrt{z}\right)}{2}\right]}\)

\(\le\sqrt{3.\left[51+\dfrac{x+y+z+12}{2}\right]}\)

\(=\sqrt{189}\)

Dấu "=" xảy ra <=> x = y = z = 4

4 tháng 7 2023

(x;y;z)={(6;9;12);(8;12;16)}(x;y;z)={(6;9;12);(8;12;16)}

Giải thích các bước giải:

2z4x3=3x2y4=4y3z23(2z4x)9=4(3x2y)16=2(4y3z)4=6z12x+12x8y+8y6z9+16+4=02z−4x3=3x−2y4=4y−3z2⇒3(2z−4x)9=4(3x−2y)16=2(4y−3z)4=6z−12x+12x−8y+8y−6z9+16+4=0

2z4x=03x2y=04y3z=0y=34z⇒{2z−4x=03x−2y=04y−3z=0⇒y=34z

mà 200<y2+z2<450200<y2+z2<450

200<(34z)2+z2<450200<2516z2<450128<z2<288⇒200<(34z)2+z2<450⇔200<2516z2<450⇔128<z2<288

Vì z là số nguyên dương 128<z<288⇒128<z<288

z{12;13;14;15;16}⇒z∈{12;13;14;15;16}

mà y là số nguyên dương và y=34zy=34z

z{12;16}⇒z∈{12;16}

Thế vào y=34zy=34z và 2z4x=02z-4x=0

+) Với z=12y=34.12=6z=12⇒y=34.12=6

                    2.124x=0x=62.12-4x=0⇒x=6

Với z=16y=34.16=12z=16⇒y=34.16=12

    2.164x=0x=82.16-4x=0⇒x=8

Vậy ta có các cặp nghiệm là: (x;y;z)={(6;9;12);(8;12;16)}

4 tháng 7 2023

(x;y;z)={(6;9;12);(8;12;16)}(x;y;z)={(6;9;12);(8;12;16)}

Giải thích các bước giải:

2z4x3=3x2y4=4y3z23(2z4x)9=4(3x2y)16=2(4y3z)4=6z12x+12x8y+8y6z9+16+4=02z−4x3=3x−2y4=4y−3z2⇒3(2z−4x)9=4(3x−2y)16=2(4y−3z)4=6z−12x+12x−8y+8y−6z9+16+4=0

2z4x=03x2y=04y3z=0y=34z⇒{2z−4x=03x−2y=04y−3z=0⇒y=34z

mà 200<y2+z2<450200<y2+z2<450

200<(34z)2+z2<450200<2516z2<450128<z2<288⇒200<(34z)2+z2<450⇔200<2516z2<450⇔128<z2<288

Vì z là số nguyên dương 128<z<288⇒128<z<288

z{12;13;14;15;16}⇒z∈{12;13;14;15;16}

mà y là số nguyên dương và y=34zy=34z

z{12;16}⇒z∈{12;16}

Thế vào y=34zy=34z và 2z4x=02z-4x=0

+) Với z=12y=34.12=6z=12⇒y=34.12=6

                    2.124x=0x=62.12-4x=0⇒x=6

Với z=16y=34.16=12z=16⇒y=34.16=12

    2.164x=0x=82.16-4x=0⇒x=8

Vậy ta có các cặp nghiệm là: (x;y;z)={(6;9;12);(8;12;16)}