Cho hình chóp S . ABCD có đáy ABCD là hình thang cân, đáy lớn AB. Biết rằngAD = DC = CB = a , AB = 2a , cạnh bên SA vuông góc với đáy và mặt phẳng (SBD) tạo với đáy góc 45o. Gọi I là trung điểm của cạnh AB. Tính khoảng cách d từ I đến mặt phẳng (SBD).
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chọn B
Chứng minh được ∆ S A D vuông cân tại A và ∆ A B D vuông tại D.
Khi đó d G , S B D = 1 3 d A , S B D = a 2 6 .
Đáp án B.
Hướng dẫn giải:Ta có
Suy ra tam giác SAD vuông cân tại A nên SA = AD =2a .
Trong hình thang ABCD , kẻ B H ⊥ A D ( H ∈ A D ) .
Do ABCD là hình thang cân nên A H = A D - B C 2 = a 2 .
Tam giác AHB ,có B H = A B 2 - A H 2 = a 3 2
Diện tích S A B C D = 1 2 ( A D + B C ) . B H = 3 a 3 2 4 .
Vậy V S . A B C D = 1 3 S A B C D . S A = a 3 3 2
Chọn A.
Xác định được
Vì M là trung điểm SA nên
Kẻ AK ⊥ DM và chứng minh được AK ⊥ (CDM) nên
Trong tam giác vuông MAD tính được
Xác định được
Vì M là trung điểm SA nên
Kẻ và chứng minh được nên
Trong ∆ vuông MAD tính được
Chọn A.
Chọn C
Phương pháp:
- Xác định góc giữa mặt phẳng (SBD) với (ABD) (góc giữa hai đường thẳng cùng vuông góc với giao tuyến)
- Tính khoảng cách dựa vào công thức tỉ số khoảng cách:
Cách giải