Cho hình chóp S.ABC có đáy là tam giác vuông tại B, AB = a 3 , AC = 2a Tam giác SAB đều và nằm trong mặt phẳng vuông góc với đáy (ABC). Tính theo a thể tích khối chóp S.ABC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi H là trung điểm AB. Có
Ta có
Khi đó thể tích khối chóp S.ABC là
Chọn đáp án A.
Đáp án A
Gọi H là trung điểm của AB suy ra S H ⊥ A B
Do Δ S A B vuông cân tại S nên S H = A B 2 = a 2 ; S A B C = a 2 2 ⇒ V = a 3 12 .
Đáp án A
Gọi H là trung điểm AB. Ta có 2 tam giác SAB và ABC đều và bằng nhau nên SH = CH = a 3 . Mà S Δ A B C = a 2 3 ⇒ V S . A B C = 1 3 a 2 3 . a 3 = a 3
Gọi H là trung điểm của AB.
∆ S A B đều và nằm trong mặt phẳng vuông góc với
Chọn D.
Chọn A
Gọi H là trung điểm AB, có
Khi đó thể tích khối chóp S>ABC là