K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 1 2016

x=2016 =>x-1=2015

Suy ra: \(C=x^{2010}-2015x^{2009}-2015x^{2008}-...-2015x+1\)

\(=x^{2010}-\left(x-1\right).x^{2009}-\left(x-1\right).x^{2008}-...-\left(x-1\right).x+1\)

\(=x^{2010}-x^{2010}+x^{2009}-x^{2009}+x^{2008}-...-x^2+x+1\)

\(=x+1=2016+1=2017\)

28 tháng 8 2015

A = 2015 - 2015x + 2015x2 - 2015x3 + 2015x4 - 2015x5 +.....+ 2015x2015

A = 2015.(1-x+x2-x3+x4-x5+...+x2015)

Thay x = 2014 và đặt

B = 1-2014+20142-20143+20144-20145+...+20142015

2014B = 2014-20142+20143-20144+20155-20146+...+20142016

2015B = 2014B + B = 1 + 20142016

=> B = \(\frac{1+2014^{2016}}{2015}\)

=> A = 2015.\(\frac{1+2014^{2016}}{2015}\)

=> A = 1+ 20142016

3 tháng 10 2015

2010. Dat nho nhat khi x=0

1 tháng 10 2017

Câu 1: Ta có: A = \(x^3+y^3+3xy=x^3+y^3+3xy\times1=x^3+y^3+3xy\left(x+y\right)\)

\(=\left(x+y\right)^3=1^3=1\)

Câu 2: Ta có: \(B=x^3-y^3-3xy=\left(x-y\right)\left(x^2+xy+y^2\right)-3xy\)

\(=x^2+xy+y^2-3xy=x^2-2xy+y^2=\left(x-y\right)^2=1^2=1\)

Câu 3: Ta có: \(C=x^3+y^3+3xy\left(x^2+y^2\right)-6x^2.y^2\left(x+y\right)\)

\(=x^3+y^3+3xy\left(x^2+2xy+y^2-2xy\right)+6x^2y^2\)

\(=x^3+y^3+3xy\left(x+y\right)^2-3xy.2xy+6x^2y^2\)

\(=x^3+y^3+3xy.1-6x^2y^2+6x^2y^3\)

\(=x^3+y^3+3xy\left(x+y\right)=\left(x+y\right)^3=1^3=1\)