Cho hàm số y = x 4 - 2 x 2 + m - 2 có đồ thị C. Gọi S là tập các giá trị của m sao cho đồ thị C có đúng một tiếp tuyến song song với trục Ox. Tổng tất cả các phần tử của S là
A. 3
B. 8
C. 5
D. 2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chọn B.
Tiếp tuyến song song với trục Ox nên hệ số góc của tiếp tuyến bằng 0.
Do đó ta có
Với x = 0 thì phương trình tiếp tuyến y = m – 1009.
Với x = ± 1 thì phương trình tiếp tuyến y = m - 1010
Dễ thấy hai tiếp tuyến trên phân biệt nên để có đúng một tiếp tuyến song song với Ox thì có một tiếp tuyến trùng với Ox tức
Suy ra S = {1009;1010}
Vậy tổng các giá trị của S bằng 2019.
Chọn B.
Tiếp tuyến song song với trục Ox nên hệ số góc của tiếp tuyến bằng 0.
Do đó ta có
y ' = 4 x 3 - 4 x = 0 ⇔ x = 0 x = 1 x = - 1
Với x = 0 thì phương trình tiếp tuyến y = m – 1009.
Với x = ± 1 thì phương trình tiếp tuyến y=m-1010
Dễ thấy hai tiếp tuyến trên phân biệt nên để có đúng một tiếp tuyến song song với Ox thì có một tiếp tuyến trùng với Ox tức m - 1009 = 0 m - 1010 = 0 ⇔ m = 1009 m = 1010 . Suy ra S = 1009 ; 1010 .
Vậy tổng các giá trị của S bằng 2019.
Đáp án B
Phương trình đường thẳng có hệ số góc k, đi qua M(m;2) là y - 1 = k(x - m) (d)
Vì (d) tiếp xúc với (C) khi và chỉ khi k = f ' x k x - m + 2 = - x 3 + 6 x 2 + 2 ⇔ k = - 3 x 2 + 12 x k x - m = - x 3 + 6 x 2
⇔ - 3 x 2 + 12 x x - m + x 3 - 6 x 2 = 0 ⇔ [ x = 0 - 3 x + 12 x x - m + x 2 - 6 x = 0
⇔ [ x = 0 - 3 x 2 + 3 m x + 12 x - 12 m + x 2 - 6 x = 0 ⇔ [ x = 0 2 x 2 - 3 m + 2 x + 12 m = 0 *
Để từ M kẻ được 2 tiếp tuyến tới đồ thị (C) khi và chỉ khi:
TH1. Phương trình (*) có nghiệm kép khác 0 ⇔ ∆ = 9 m + 2 2 - 96 m = 0 ⇔ [ m = 6 m = 2 3
TH2. Phương trình (*) có nghiệm kép bằng 0, nghiệm còn lại khác 0 ⇔ 12 m = 0 ∆ > 0 ⇔ m = 0
Vậy m = 0 ; 2 3 ; 6 là các giá trị cần tìm → ∑ m = 0 + 2 3 + 6 = 20 3 .
Đáp án C
Phương pháp : Xét từng mệnh đề.
Cách giải:
(I) sai. Ví dụ hàm số có đồ thị hàm số như sau:
õ ràng
(II) đúng vì y ' = 4 a x 3 + 2 b x = 0 luôn có một nghiệm x = 0 nên đồ thị hàm số y = a x 4 + b x 2 + c ( a ≠ 0 ) luôn có ít nhất một điểm cực trị
(III) Gọi x 0 là 1 điểm cực trị của hàm số => Phương trình tiếp tuyến của đồ thị hàm số tại điểm có hoành độ x 0 là: luôn song song với trục hoành.
Vậy (III) đúng.
Lời giải:
Để PTTT tại $x=x_0$ song song với trục hoành thì $f'(x_0)=0$ và $f(x_0)\neq 0$
$f'(x)=4x^3-4x=0\Leftrightarrow x=0;1;-1$
Thử các giá trị $x$ này vô $f(x_0)$ xem có khác $0$ hay không ta thu được $x=\pm 1$
Tức là có 2 tiếp tuyến của $(C)$ song song với trục hoành.
Chọn C.
Phương pháp:
Nhận xét rằng: Với hàm đã cho thì để tiếp tuyến của đồ thị hàm số đó song song với trục Ox thì tiếp điểm là điểm cực trị của đồ thị hàm số.
Từ đó suy ra điều kiện để có đúng một tiếp tuyến song song với trục Ox.
Chú ý rằng ta tìm cực trị bằng định lý:
+ Nếu y ' x 0 = 0 y " x 0 < 0 ⇒ x 0 là điểm cực
đại của hàm số.
+ Nếu y ' x 0 = 0 y " x 0 > 0 ⇒ x 0 là điểm cực
tiểu của hàm số.