Cho hàm số y = x + 2 x + 1 C . Gọi d là khoảng cách từ giao điểm hai tiệm cận của đồ thị C đến một tiếp tuyến của . Giá trị lớn nhất d có thể đạt được là.
A. 3 3
B. 3
C. 2
D. 2 2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án C
Tiệm cận đứng: d 1 : x = - 1 , tiệm cận ngang d 2 : y = 1 suy ra tâm đối xứng là I ( - 1 ; 1 ) . Phương trình tiếp tuyến tại M a ; a + 2 a + 1 ∈ ( C ) a ≠ - 1 là: y = - 1 ( a + 1 ) 2 x - a + a + 2 a + 1 d
Khi đó d I ; d = - 1 a + 1 2 - 1 - a - 1 + a + 2 a + 1 1 a + 1 4 + 1 = 2 a + 1 1 a + 1 4 + 1 = 2 1 a + 1 2 + a + 1 2 ≤ 2 2 1 a + 1 2 . a + 1 2 . Hay d ≤ 2 2 = 2 .
Đáp án A
Ta có: I 3 2 ; 1 2 . PTTT tại điểm M bất kì là: y = − 1 2 x 0 − 3 2 x − x 0 + x 0 − 1 2 x 0 − 3 Δ
Khi đó: d I ; Δ = 1 2 2 x 0 − 3 + x 0 − 1 2 x 0 − 3 − 1 2 1 2 x 0 − 3 + 1 = 1 1 2 x 0 − 3 2 + 2 x 0 − 2 2 ≤ 1 2
+ Gọi M ( x 0 ; 2 + 3 x 0 - 1 ) ∈ C , x 0 ≠ 1 .
Phương trình tiếp tuyến tại M có dạng
∆ : y = - 3 x 0 - 1 2 ( x - x 0 ) + 2 + 3 x 0 - 1
+ Giao điểm của ∆ với tiệm cận đứng là A ( 1 ; 2 + 6 x 0 - 1 )
+ Giao điểm của ∆ với tiệm cận ngang là B( 2x0-1; 2).
Ta có S ∆ I A B = 1 2 I A . I B = 1 2 . 6 x 0 - 1 . 2 . x 0 - 1 = 2 . 3 = 6
Tam giác IAB vuông tại I có diện tích không đổi nên chu vi tam giác IAB đạt giá trị nhỏ nhất khi
IA=IB
+Với x 0 = 1 + 3 thì phương trình tiếp tuyến là ∆ : y = - x + 3 + 2 3 . Suy ra
d O , ∆ = 3 + 2 3 2
+ Với x 0 = 1 - 3 thì phương trình tiếp tuyến là ∆ : y = - x + 3 - 2 3 . Suy ra
d O , ∆ = - 3 + 2 3 2
Vậy khoảng cách lớn nhất là 3 + 2 3 2 gần với giá trị 5 nhất trong các đáp án.
Chọn D.
Chọn C.
Phương pháp: Viết phương trình tiếp tuyến và tính khoảng cách, sau đó sử dụng điều kiện có nghiệm để tìm giá trị lớn nhất.
Tọa độ giao điểm của hai đường tiệm cận của (C) là I(-1;1)
Ta có: