K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 1 2016

Trong toán học, nguyên lý chuồng bồ câunguyên lý hộp hay nguyên lý ngăn kéo Dirichlet có nội dung là nếu như một số lượng nvật thể được đặt vào m chuồng bồ câu, với điều kiện n > m, thì ít nhất một chuồng bồ câu sẽ có nhiều hơn 1 vật thể.[1] Định lý này được minh họa trong thực tế bằng một số câu nói như "trong 3 găng tay, có ít nhất hai găng tay phải hoặc hai găng tay trái." Đó là một ví dụ của một đối số đếm, và mặc dù trông có vẻ trực giác nhưng nó có thể được dùng để chứng minh về khả năng xảy ra những sự kiện "không thể ngờ tới", tỉ như 2 người có cùng 1 số lượng sợi tóc trên đầu, trong 1 đám đông lớn có một số người mặc kiểu quần áo giống nhau, hoặc bất thình lình trong hộp thư nhận được 1 số lượng cực lớn thư rác[1].

Người đầu tiên đề xuất ra nguyên lý này được cho là nhà toán học Đức Johann Dirichlet khi ông đề cập tới nó với tên gọi "nguyên lý ngăn kéo" (Schubfachprinzip). Vì vậy, một tên gọi thông dụng khác của nguyên lý chuồng bồ câu chính là "nguyên lý ngăn kéo Dirichlet" hay đôi khi gọi gọn là "nguyên lý Dirichlet" (tên gọi gọn này có thể gây ra nhầm lẫn với nguyên lý Dirichlet về hàm điều hòa). Trong một số ngôn ngữ như tiếng Pháp, tiếng Ý và tiếng Đức, nguyên lý này cũng vẫn được gọi bằng tên "ngăn kéo" chứ không phải "chuồng bồ câu".

Nguyên lý ngăn kéo Dirichlet dược ứng dụng trực tiếp nhất cho các tập hợp hữu hạn (hộp, ngăn kéo, chuồng bồ câu), nhưng nó cũng có thể được áp dụng đối với các tập hợp vô hạn không thể được đặt vào song ánh. Cụ thể trong trường hợp này nguyên lý ngăn kéo có nội dung là: "không tồn tại một đơn ánh trên những tập hợp hữu hạn mà codomain của nó nhỏ hơn tập xác định của nó". Một số định lý của toán học như bổ đề Siegel được xây dựng trên nguyên lý này.

10 tháng 1 2016

Nguyên lý ngăn kéo Dirichlet – Wikipedia tiếng Việt

12 tháng 3 2015

nguyên lý ngăn kéo Diritchlet có nội dung là nếu như một số lượng n vật thể được đặt vào m chuồng bồ câu, với điều kiện n > m, thì ít nhất một chuồng bồ câu sẽ có nhiều hơn 1 vật thể.[1] Định lý này được minh họa trong thực tế bằng một số câu nói như "trong 2 găng tay, có ít nhất hai găng tay phải hoặc hai găng tay trái." Đó là một ví dụ của một đối số đếm, và mặc dù trông có vẻ trực giác nhưng nó có thể được dùng để chứng minh về khả năng xảy ra những sự kiện "không thể ngờ tới", tỉ như 2 người có cùng 1 số lượng sợi tóc trên đầu, trong 1 đám đông lớn có một số người mặc kiểu quần áo giống nhau, hoặc bất thình lình trong hộp thư nhận được 1 số lượng cực lớn thư rác[1].

12 tháng 3 2015

nguyên lý Direchlet được phát biểu như sau: nếu nhốt 7 con thỏ vào trong 3 cái lồng thì ít nhất có một cái lồng chứa 3 con thỏ .

25 tháng 5 2015

Trong toán học, nguyên lý chuồng bồ câunguyên lý hộp hay nguyên lý ngăn kéo Diritchlet có nội dung là nếu như một số lượng n vật thể được đặt vào mchuồng bồ câu, với điều kiện n > m, thì ít nhất một chuồng bồ câu sẽ có nhiều hơn 1 vật thể.[1] Định lý này được minh họa trong thực tế bằng một số câu nói như "trong 3 găng tay, có ít nhất hai găng tay phải hoặc hai găng tay trái." Đó là một ví dụ của một đối số đếm, và mặc dù trông có vẻ trực giác nhưng nó có thể được dùng để chứng minh về khả năng xảy ra những sự kiện "không thể ngờ tới", tỉ như 2 người có cùng 1 số lượng sợi tóc trên đầu, trong 1 đám đông lớn có một số người mặc kiểu quần áo giống nhau, hoặc bất thình lình trong hộp thư nhận được 1 số lượng cực lớn thư rác[1].

Người đầu tiên đề xuất ra nguyên lý này được cho là nhà toán học Đức Johann Dirichlet khi ông đề cập tới nó với tên gọi "nguyên lý ngăn kéo" (Schubfachprinzip). Vì vậy, một tên gọi thông dụng khác của nguyên lý chuồng bồ câu chính là "nguyên lý ngăn kéo Dirichlet" hay đôi khi gọi gọn là "nguyên lý Dirichlet" (tên gọi gọm này có thể gây ra nhầm lẫn với nguyên lý Dirichlet về hàm điều hòa). Trong một số ngôn ngữ như tiếng Pháp, tiếng Ý và tiếng Đức, nguyên lý này cũng vẫn được gọi bằng tên "ngăn kéo" chứ không phải "chuồng bồ câu".

25 tháng 5 2015

o trong sgk co day sao ban ko xem vay ?

24 tháng 3 2015

Trong toán học, nguyên lý chuồng bồ câunguyên lý hộp hay nguyên lý ngăn kéo Diritchlet có nội dung là nếu như một số lượng nvật thể được đặt vào m chuồng bồ câu, với điều kiện n > m, thì ít nhất một chuồng bồ câu sẽ có nhiều hơn 1 vật thể.[1] Định lý này được minh họa trong thực tế bằng một số câu nói như "trong 2 găng tay, có ít nhất hai găng tay phải hoặc hai găng tay trái." Đó là một ví dụ của một đối số đếm, và mặc dù trông có vẻ trực giác nhưng nó có thể được dùng để chứng minh về khả năng xảy ra những sự kiện "không thể ngờ tới", tỉ như 2 người có cùng 1 số lượng sợi tóc trên đầu, trong 1 đám đông lớn có một số người mặc kiểu quần áo giống nhau, hoặc bất thình lình trong hộp thư nhận được 1 số lượng cực lớn thư rác[1].

Người đầu tiên đề xuất ra nguyên lý này được cho là nhà toán học Đức Johann Dirichlet khi ông đề cập tới nó với tên gọi "nguyên lý ngăn kéo" (Schubfachprinzip). Vì vậy, một tên gọi thông dụng khác của nguyên lý chuồng bồ câu chính là "nguyên lý ngăn kéo Dirichlet" hay đôi khi gọi gọn là "nguyên lý Dirichlet" (tên gọi gọm này có thể gây ra nhầm lẫn với nguyên lý Dirichlet về hàm điều hòa). Trong một số ngôn ngữ như tiếng Pháp, tiếng Ý và tiếng Đức, nguyên lý này cũng vẫn được gọi bằng tên "ngăn kéo" chứ không phải "chuồng bồ câu".

Nguyên lý ngăn kéo Dirichlet dược ứng dụng trực tiếp nhất cho các tập hợp hữu hạn (hộp, ngăn kéo, chuồng bồ câu), nhưng nó cũng có thể được áp dụng đối với các tập hợp vô hạn không thể được đặt vào song ánh. Cụ thể trong trường hợp này nguyên lý ngăn kéo có nội dung là: "không tồn tại một đơn ánh trên những tập hợp hữu hạn mà codomain của nó nhỏ hơn tập xác định của nó". Một số định lý của toán học như bổ đề Siegel được xây dựng trên nguyên lý này.

Nếu m con chim bồ câu được đặt vào n chuồng chim bồ câu và m > n, thì (ít nhất) một chuồng chim bồ câu sẽ bao hàm ít nhất \lfloor m/n \rfloor vật thể nếu m là bội của n, và ít nhất \lfloor m/n \rfloor + 1 vật thể nếu m không phải là bội của n.

[2]

Mở rộng hơn nữa, ta có thể viết nguyên lý ngăn kéo Dirichlet như sau:

Nếu m vật thể được đặt vào n hộp chứa, thì ít nhất một hộp chứa sẽ mang không dưới \lceil m/n \rceil vật thể và ít nhất một hộp chứa sẽ mang không quá \lfloor m/n \rfloor vật thể.
24 tháng 3 2015

Trong toán học, nguyên lý chuồng bồ câu, nguyên lý hộp hay nguyên lý ngăn kéo Diritchlet có nội dung là nếu như một số lượng nvật thể được đặt vào m chuồng bồ câu, với điều kiện n > m, thì ít nhất một chuồng bồ câu sẽ có nhiều hơn 1 vật thể.[1] Định lý này được minh họa trong thực tế bằng một số câu nói như "trong 2 găng tay, có ít nhất hai găng tay phải hoặc hai găng tay trái." Đó là một ví dụ của một đối số đếm, và mặc dù trông có vẻ trực giác nhưng nó có thể được dùng để chứng minh về khả năng xảy ra những sự kiện "không thể ngờ tới", tỉ như 2 người có cùng 1 số lượng sợi tóc trên đầu, trong 1 đám đông lớn có một số người mặc kiểu quần áo giống nhau, hoặc bất thình lình trong hộp thư nhận được 1 số lượng cực lớn thư rác[1].

Người đầu tiên đề xuất ra nguyên lý này được cho là nhà toán học Đức Johann Dirichlet khi ông đề cập tới nó với tên gọi "nguyên lý ngăn kéo" (Schubfachprinzip). Vì vậy, một tên gọi thông dụng khác của nguyên lý chuồng bồ câu chính là "nguyên lý ngăn kéo Dirichlet" hay đôi khi gọi gọn là "nguyên lý Dirichlet" (tên gọi gọm này có thể gây ra nhầm lẫn với nguyên lý Dirichlet về hàm điều hòa). Trong một số ngôn ngữ như tiếng Pháp, tiếng Ý và tiếng Đức, nguyên lý này cũng vẫn được gọi bằng tên "ngăn kéo" chứ không phải "chuồng bồ câu".

Nguyên lý ngăn kéo Dirichlet dược ứng dụng trực tiếp nhất cho các tập hợp hữu hạn (hộp, ngăn kéo, chuồng bồ câu), nhưng nó cũng có thể được áp dụng đối với các tập hợp vô hạn không thể được đặt vào song ánh. Cụ thể trong trường hợp này nguyên lý ngăn kéo có nội dung là: "không tồn tại một đơn ánh trên những tập hợp hữu hạn mà codomain của nó nhỏ hơn tập xác định của nó". Một số định lý của toán học như bổ đề Siegel được xây dựng trên nguyên lý này.

Nếu m con chim bồ câu được đặt vào n chuồng chim bồ câu và m > n, thì (ít nhất) một chuồng chim bồ câu sẽ bao hàm ít nhất \lfloor m/n \rfloor vật thể nếu m là bội của n, và ít nhất \lfloor m/n \rfloor + 1 vật thể nếu m không phải là bội của n.    ”
—[2]
Mở rộng hơn nữa, ta có thể viết nguyên lý ngăn kéo Dirichlet như sau:

“    Nếu m vật thể được đặt vào n hộp chứa, thì ít nhất một hộp chứa sẽ mang không dưới \lceil m/n \rceil vật thể và ít nhất một hộp chứa sẽ mang không quá \lfloor m/n \rfloor vật thể.
oi dai wa

4 tháng 5 2015

vậy là bạn trả lời...rất chính xác                

10 tháng 1 2016

Là nguyên lý Direchlet thôi!

Geography

6 tháng 12 2021

Thanks 

Nguyên nhân thất bại của An Dương Vương:

- Do chủ quan, quá tự tin vào lực lượng của mình, không đề cao tinh thần cảnh giác với kẻ thù.

- Nội bộ không đoàn kết, thống nhất cùng nhau chống giặc.

- Yêu con mù quáng, quá tin vào nỏ thần, tự mãn với chiến thắng.

8 tháng 2 2021

Câu này dễ

Năm 179 TCN, Triệu Đà xuống xâm chiếm Âu Lạc, An Dương Vuong bị mất hết tướng giỏi nên nước Âu Lạc rơi tay vào nhà Triệu

16 tháng 11 2021

Tham khảo

Sơ đồ nguyên lý điện dân dụng dùng để nghiên cứu những nguyên lý hoạt động của các thiết bị điện và mạch điện. Đây là dạng sơ đồ hiển thị ví trí lắp đặt, các lắp ráp giữa các phần tử của mạch điện.Sơ đồ lắp đặt được trình bày cụ thể vị trí chính xác từng linh kiện (bộ phận) từng mạch điện trong một thiết bị.

19 tháng 10 2016

là toán và tán

19 tháng 10 2016

toán và tán

3 tháng 2 2016

Trong toán học, nguyên lý chuồng bồ câunguyên lý hộp hay nguyên lý ngăn kéo Dirichlet có nội dung là nếu như một số lượng n vật thể được đặt vào m chuồng bồ câu, với điều kiện n > m, thì ít nhất một chuồng bồ câu sẽ có nhiều hơn 1 vật thể. Định lý này được minh họa trong thực tế bằng một số câu nói như "trong 3 găng tay, có ít nhất hai găng tay phải hoặc hai găng tay trái." Đó là một ví dụ của một đối số đếm, và mặc dù trông có vẻ trực giác nhưng nó có thể được dùng để chứng minh về khả năng xảy ra những sự kiện "không thể ngờ tới", tỉ như 2 người có cùng 1 số lượng sợi tóc trên đầu, trong 1 đám đông lớn có một số người mặc kiểu quần áo giống nhau, hoặc bất thình lình trong hộp thư nhận được 1 số lượng cực lớn thư rác.

Bạn có thể xem thêm tại: https://vi.wikipedia.org/wiki/Nguy%C3%AAn_l%C3%BD_ng%C4%83n_k%C3%A9o_Dirichlet