Cho tổng: S n = 1 1 . 5 + 1 5 . 9 + . . . + 1 4 n - 3 4 n + 1
a) Tính S 1 , S 2 , S 3 , S 4 ;
b) Dự đoán công thức tính S n và chứng minh bằng phương pháp quy nạp.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
uses crt;
var n,n1,s:real;
begin
clrscr;
write('Nhap n: ');readln(n);
n1:=2*n+1;
s:=((n1 - 1)/2+1)*(n1 + 1)/2;
write(s:0:0);
readln
end.
Bài 1:
A=\(\dfrac{\dfrac{5}{12}+\dfrac{3}{4}-1}{3-\dfrac{5}{6}+\dfrac{2}{3}}+\dfrac{\dfrac{16}{5}+\dfrac{16}{7}-\dfrac{16}{9}}{\dfrac{17}{5}+\dfrac{17}{7}-\dfrac{17}{9}}\)
A=\(\dfrac{\dfrac{1}{6}}{\dfrac{17}{6}}+\dfrac{16\left(\dfrac{1}{5}+\dfrac{1}{7}-\dfrac{1}{9}\right)}{17\left(\dfrac{1}{5}+\dfrac{1}{7}-\dfrac{1}{9}\right)}\)
A=\(\dfrac{1.\dfrac{1}{6}}{17.\dfrac{1}{6}}+\dfrac{16}{17}\)
A=\(\dfrac{1}{17}+\dfrac{16}{17}=\dfrac{17}{17}=1\)
Bài 2 mk chưa có câu trả lời, sorry nha!
1/
\(N=1.\left(2-1\right)+2\left(3-1\right)+3\left(4-1\right)+...+99\left(100-1\right)=\)
\(=\left(1.2+2.3+3.4+...+99.100\right)-\left(1+2+3+...+99\right)=\)
Đặt
\(A=1.2+2.3+3.4+...+99.100\)
\(3A=1.2.3+2.3.3+3.4.3+...+99.100.3=\)
\(=1.2.3+2.3.\left(4-1\right)+3.4.\left(5-2\right)+...+99.100.\left(101-98\right)=\)
\(=1.2.3-1.2.3+2.3.4-2.3.4+3.4.5-...-98.99.100+99.100.101=\)
\(=99.100.101\Rightarrow A=\dfrac{99.100.101}{3}=33.100.101\)
Đặt
\(B=1+2+3+...+99=\dfrac{99.\left(1+99\right)}{2}=4950\)
\(\Rightarrow N=A-B\)
2/
Số hạng cuối cùng là 10000 hoặc 1000000 mới làm được
\(A=1^2+2^2+3^2+...+100^2\)
Tính như câu 1
3/ Làm như bài 4
4/
\(S=1^2+3^2+5^2+...+99^2=\)
\(=1.\left(3-2\right)+3\left(5-2\right)+5\left(7-2\right)+...+99\left(101-2\right)=\)
\(=\left(1.3+3.5+5.7+...+99.101\right)-2\left(1+3+5+...+99\right)\)
Đặt
\(B=1+3+5+...+99=\dfrac{50.\left(1+99\right)}{2}=2500\)
Đặt
\(A=1.3+3.5+5.7+...+99.101\)
\(6A=1.3.6+3.5.6+3.7.6+...+99.101.6=\)
\(=1.3.\left(5+1\right)+3.5.\left(7-1\right)+5.7.\left(9-3\right)+...+99.101.\left(103-97\right)=\)
\(=1.3+1.3.5-1.3.5+3.5.7-3.5.7+5.7.9-...-97.99.101+99.101.103=\)
\(=3+99.101.103\Rightarrow A=\dfrac{3+99.101.103}{6}\)
\(\Rightarrow S=A-2B\)
Bài 1:
\(N=1^2+2^2+3^3+...+99^2\)
\(N=1.1+2.2+3.3+...+99.99\)
\(N=1.\left(2-1\right)+2.\left(3-1\right)+3.\left(4-1\right)+...+99.\left(100-1\right)\)
\(N=1.2-1+2.3-2+3.4-3+...+99.100-99\)
\(N=\left(1.2+2.3+3.4+...+99.100\right)-\left(1+2+3+...+99\right)\)
Đặt \(\left\{{}\begin{matrix}A=1.2+2.3+3.4+...+99.100\\B=1+2+3+...+99\end{matrix}\right.\)
+) Tính \(A=1.2+2.3+3.4+...+99.100\)
Ta có:
\(3A=1.2.3+2.3.3+3.4.3+...+99.100.3\)
\(3A=1.2.3+2.3.\left(4-1\right)+3.4.\left(5-2\right)+...+99.100.\left(101-98\right)\)
\(3A=1.2.3+2.3.4-1.2.3+3.4.5-2.3.4+...+99.100.101-98.99.100\)
\(3A=99.100.101\)
\(\Rightarrow A=\dfrac{99.100.101}{3}=333300\)
+) Tính \(B=1+2+3+...+99\)
\(B\) có số số hạng là: \(\dfrac{99-1}{1}\) + 1 = 99 (số hạng)
\(\Rightarrow B=\dfrac{\left(99+1\right).99}{2}=4950\)
\(\Rightarrow N=A-B=333300-4950=328350\)
\(\Rightarrow N=328350\)
Bài 1:
Tổng các chữ số của \(A\) là \(9n\)
\(A^2=99...9800...01\left(n-1\text{ chữ số }9\text{ và chữ số }0\right)\)
Vậy tổng các chữ số của \(A^2\) là \(\left(9+0\right)\left(n-1\right)+8+1=9\left(n-1\right)+9=9\left(n-1+1\right)=9n\)
Vậy tổng các chữ số của \(A\) bằng tổng các chữ số của \(A^2\) .
uses crt;
var s:real;
i,n:integer;
begin
clrscr;
readln(n);
s:=0;
for i:=1 to n do
s:=s+(n*(n+1))/((n+2)*(n+3));
writeln(s:4:2);
readln;
end.
a) Tính
b) Viết lại
Ta có thể dự đoán