K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 12 2018

Đặt y = f(x) = x2 + x + 1.

+ TXĐ: D = R nên với ∀x ∈ D thì –x ∈ D.

+ f(–x) = (–x)2 + (–x) + 1 = x2 – x + 1 ≠ x2 + x + 1 = f(x)

+ f(–x) = (–x)2 + (–x) + 1 = x2 – x + 1 ≠ –(x2 + x + 1) = –f(x)

Vậy hàm số y = x2 + x + 1 không chẵn, không lẻ.

11 tháng 10 2021

TXĐ: D=R

Nếu \(x\in D\Rightarrow-x\in D\)

\(f\left(-x\right)=-2\cdot\left(-x\right)^4+\left(-x\right)^2-10\)

\(=-2x^4+x^2-10\)

=f(x)

=>f(x) là hàm số chẵn

8 tháng 3 2017

Vậy hàm số đa cho là lẻ

Chọn B.

8 tháng 2 2018

Tập xác định D = R\{0} nên nếu x ≠ 0 và x ∈ D thì -x ∈ D

Vậy hàm số đã cho là hàm số lẻ.

5 tháng 12 2017

Đặt y = f(x) = |x|.

+ Tập xác định D = R nên với ∀ x ∈ D thì –x ∈ D.

+ f(–x) = |–x| = |x| = f(x).

Vậy hàm số y = |x| là hàm số chẵn.

5 tháng 5 2017

Đặt y = f(x) = x3 + x.

+ TXĐ: D = R nên với ∀x ∈ D thì –x ∈ D.

+ f(–x) = (–x)3 + (–x) = –x3 – x = – (x3 + x) = –f(x)

Vậy y = x3 + x là một hàm số lẻ.

3 tháng 11 2018

Đặt y = f(x) = (x + 2)2.

+ TXĐ: D = R nên với ∀x ∈ D thì –x ∈ D.

+ f(–x) = (–x + 2)2 = (x – 2)2 ≠ (x + 2)2 = f(x)

+ f(–x) = (–x + 2)2 = (x – 2)2 ≠ – (x + 2)2 = –f(x).

Vậy hàm số y = (x + 2)2 không chẵn, không lẻ.

17 tháng 2 2018

y = f(x) = 1/x

TXĐ: D = R \{0} ⇒ x ∈ D thì-x ∈ D

f(-x) = 1/(-x) = -1/x = -f(x)

Vậy y = f(x) = 1/x là hàm số lẻ.

17 tháng 6 2021

Đặt `y=f(x)=x-sinx`

Có: `f(-x)=-x-sin(-x)=-x+sinx=-(x-sinx)=-f(x)`

`=>` Hàm lẻ.