Cho hàm số: y = 4 - x 2 x + 3 m
Xét tính đơn điệu của hàm số.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
TXĐ: D = R \ {-2}
Ta có: \(y'=\dfrac{\left(-2x+2\right)\left(x+2\right)-\left(-x^2+2x-1\right)}{\left(x+2\right)^2}=\dfrac{-x^2-4x+5}{\left(x+2\right)^2}\)
\(y'=0\Rightarrow-x^2-4x+5=0\Leftrightarrow\left[{}\begin{matrix}x=-5\\x=1\end{matrix}\right.\)
⇒ Hàm số y đồng biến trên (-5, -2) và (-2, 1)
Hàm số y nghịch biến trên (-∞, -5) và (1, +∞)
\(f\left(x\right)=x+\sqrt[]{x^2-4}\)
\(f\left(x\right)\) xác định khi và chỉ khi
\(x^2-4\ge0\Leftrightarrow x^2\ge4\Leftrightarrow x\le-2\cup x\ge2\)
Tập xác định : \(D=(-\infty;-2]\cup[2;+\infty)\)
\(f'\left(x\right)=1+\dfrac{x}{\sqrt[]{x^2-4}}\)
\(f'\left(x\right)=0\)
\(\Leftrightarrow1+\dfrac{x}{\sqrt[]{x^2-4}}=0\)
\(\Leftrightarrow\dfrac{\sqrt[]{x^2-4}+x}{\sqrt[]{x^2-4}}=0\)
\(\Leftrightarrow\sqrt[]{x^2-4}+x=0\left(x< -2;x>2\right)\)
Theo bất đẳng thức Bunhiacopxki:
\(\left(1.\sqrt[]{x^2-4}+1.x\right)^2\le2\left(2x^2+4\right)=4\left(x^2+2\right)\)
\(pt\Leftrightarrow4\left(x^2+2\right)=0\left(vô.lý\right)\)
\(\Rightarrow\) phương trình vô nghiệm
Tiếp tục bài giải, mình nhấn nút gửi
\(...\Rightarrow f'\left(x\right)>0,\forall x\in D\)
\(\Rightarrow f\left(x\right)\) luôn luôn tăng trên tập xác định D.
TXĐ: D=(\(-\infty;2\)]
\(y'=1+2.\dfrac{-1}{2\sqrt{2-x}}\)\(=1-\dfrac{1}{\sqrt{2-x}}\)
Ta có bảng biến thiên sau:
x | \(-\infty\) 1 2 |
y' | + 0 - || |
Vậy hàm số đồng biến trên khoảng \(\left(-\infty;1\right)\) và nghịch biến trên khoảng \(\left(1;2\right)\)
a: Hàm số đồng biến trên R
b: Hàm số nghịch biến trên R
cả nhà giúp mình với mai minh kiểm tra chất lượng rồi. Thanks all.
Xét hàm số: y = 4 - x 2 x + 3 m
TXĐ: R \ {−3m/2}
+) Nếu m < −8/3, y′ > 0 suy ra hàm số đồng biến trên các khoảng
+) Nếu m > −8/3, y′ < 0 suy ra hàm số nghịch biến trên các khoảng
+) Nếu m = −8/3 thì y = −1/2 khi x ≠ 4