Giải bài toán sau đây bằng phương pháp tọa độ. Cho hình lập phương ABCD.A'B'C'D' có cạnh bằng 1. Tính khoảng cách từ đỉnh A đến các mặt phẳng (A'BD) và (B'D'C).
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chọn hệ trục tọa độ Oxyz sao cho A)0 ; 0 ; 0), B(1 ; 0 ; 0), D(0 ; 1; 0), A'(0 ; 0 ; 1)
Khi đó
B'(1 ; 0 ; 1), D'(0 ; 1 ; 1), C(1 ; 1 ; 0). Phương trình mặt phẳng (A'BD) có dạng:
x + y + z - 1 = 0. (1)
Ta tìm được phương trình mặt phẳng (B'D'C):
Vectơ: (0 ; -1 ; 1) ; (-1 ; 0 ; 1).
Mặt phẳng (B'D'C) qua điểm C và nhận = (-1 ; -1 ; -1 ) làm vectơ pháp tuyến. Phương trình mặt phẳng (B'D'C) có dạng:
x + y + z - 2 = 0 (2)
Ta có
Chọn hệ trục tọa độ Oxyz sao cho A)0 ; 0 ; 0), B(1 ; 0 ; 0), D(0 ; 1; 0), A'(0 ; 0 ; 1)
Khi đó
B'(1 ; 0 ; 1), D'(0 ; 1 ; 1), C(1 ; 1 ; 0). Phương trình mặt phẳng (A'BD) có dạng:
x + y + z - 1 = 0. (1)
Ta tìm được phương trình mặt phẳng (B'D'C):
Vectơ: (0 ; -1 ; 1) ; (-1 ; 0 ; 1).
Mặt phẳng (B'D'C) qua điểm C và nhận = (-1 ; -1 ; -1 ) làm vectơ pháp tuyến. Phương trình mặt phẳng (B'D'C) có dạng:
x + y + z - 2 = 0 (2)
Ta có
Mặt phẳng (BC’D) có VTPT (1;1; -1) và qua B (1; 0;0) nên có phương trình:
1( x- 1) + 1( y – 0) - 1( z- 0)= 0 hay x + y - z - 1 = 0
Khoảng cách giữa hai mặt phẳng song song (AB’D’) và (BC’D) chính là khoảng cách từ A đến (BC’D) và bằng :
Chọn hệ trục tọa độ Oxyz có gốc O ≡ A;
⇒ A(0; 0; 0) ; B(1; 0; 0); C(1; 1; 0); D(0; 1; 0).
A’(0; 0; 1); B’(1; 0; 1); C’(1; 1; 1); D’(0; 1; 1).
⇒ Vectơ pháp tuyến của (AB’D’) là:
⇒ Vectơ pháp tuyến của (BC’D) là:
⇒ (AB’D’) // (BC’D).
Chọn D.
Xét hình chóp AA'BD có AA' = AB = AD và đôi một vuông góc với nhau nên
Đặt hình lập phương ABCD.A'B'C'D' vào hệ trục Oxyz sao cho O(0;0;0) ≡ A
*mp(B'D'C')//mp(A'BD) vì (B'C//A'D và D'C//A'B) nên pt của mp (B'D'C) có dạng x+y+z+D=0 (D ≠ -1)
mp(B'D'C) đi qua điểm C(1;1;0) <=>D=-2
Suy ra pt của mp(B'D'C) là: x+y+z-z=0