K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 11 2021

Cũng muốn giúp lắm mà chưa học tới nên thoai say bye

8 tháng 11 2021

uk

8 tháng 3 2019

\(\left|x+1\right|+\left|x+2\right|+...+\left|x+100\right|=605x\)(1)

Vì \(VT>0\forall x\)

\(\Rightarrow VP>0\Leftrightarrow605x>0\Leftrightarrow x>0\)

Khi đó \(\left(1\right)\Leftrightarrow x+1+x+2+...+x+100=605x\)

\(\Leftrightarrow100x+5050=605x\)

\(\Leftrightarrow505x=5050\)

\(\Leftrightarrow x=10\)( thỏa mãn )

Vậy....

\(\left(x+1\right)+\left(x+2\right)+...+\left(x+100\right)=5750\)

\(\left(x\cdot100\right)+\left(1+2+...+100\right)=5750\)

\(\left(x\cdot100\right)+\left(100+1\right)\cdot\frac{100}{2}=5750\)

\(\left(x\cdot100\right)+101\cdot50=5750\)

\(\left(x\cdot100\right)+5050=5750\)

\(x\cdot100=5750-5050\)

\(x\cdot100=700\)

\(x=700\div100\)

\(x=7\)

7 tháng 5 2018

Ta có: ( x+1)+(x+2)+(x+3)+.....+(x+99)+(x+100)=5750

<=>(x+x+x+....+x+x)+(1+2+3+..+99+100)=5750

<=> 100x+5050=5750

=>100x=5750-5050

=>100x=700

=>x=700:100

=>x=7

Vậy x=7

 hoặc mở câu hỏi tương tự tham khảo.

20 tháng 3 2020

Đúng là chơi lừa bịp thực sự bài này rất dễ đây là cách giải:

ta có: \(\left(x+y\right)^2+\left(y+z\right)^4+.....+\left(x+z\right)^{100}\ge0\)còn \(-\left(y+z+x\right)\le0\)  nên phương trình 1 vô lý 

tương tự chứng minh phương trinh 2 và 3 vô lý 

vậy \(\hept{\begin{cases}x=\varnothing\\y=\varnothing\\z=\varnothing\end{cases}}\)

thực sự bài này mới nhìn vào thì đánh lừa người làm vì các phương trình rất phức tạp nhưng nếu nhìn kĩ lại thì nó rất dễ vì các trường hợp đều vô nghiệm

20 tháng 4 2020

\(\left(x+y\right)^2+\left(y+z\right)^4+...+\left(x+z\right)^{100}=-\left(y+z+x\right)\)

Đặt : \(A=\left(x+y\right)^2+\left(y+z\right)^4+...+\left(x+z\right)^{100}\)

Ta dễ dàng nhận thấy tất cả số mũ đều chẵn 

\(=>A\ge0\)(1)

Đặt : \(B=-\left(y+z+x\right)\)

\(=>B\le0\)(2)

Từ 1 và 2 \(=>A\ge0\le B\)

Dấu "=" xảy ra khi và chỉ khi \(A=B=0\)

Do \(B=0< =>y+z+x=0\)(3)

\(A=0< =>\hept{\begin{cases}x+y=0\\y+z=0\\x+z=0\end{cases}}\)(4)

Từ 3 và 4 \(=>x=y=z=0\)

Vậy nghiệm của pt trên là : {x;y;z}={0;0;0}

10 tháng 4 2021

a) Quy luật là gì ??

b) 

Đặt

 \(A=\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{2020}}\\\Rightarrow2A=1+\dfrac{1}{2}+...+\dfrac{1}{2^{2019}}\\ \Rightarrow2A-A=1-\dfrac{1}{2^{2020}}\Rightarrow A=1-\dfrac{1}{2^{2020}}\)

Suy ra , phương trình trở thành :

213 -x  =13

<=> x=200

12 tháng 7 2017

a) (x-1)+(x-2)+(x-3)+...+(-100)=101

(x+x+x+...+x)-(1+2+3+...+100)=101

=> 100x-5050=101

100x=101+5050

100x=5151

x=5151:100

x=5151/100

18 tháng 3 2020

thực hiện phép tính

Phân thức cuối hình như mẫu sai rồi bạn

Phải là (x+9)(x+10) mới đúng chứ

15 tháng 6 2017

c) (x+1) + (x+2) + ... + (x+5) = 90

=> 5x + ( 1 + 2 + ... + 5 ) = 90

5x + 15 = 90

5x = 90 - 15

5x = 75

x = 75 : 5

x  = 15

d) (x+1) + (x+2) + .... + (x+100) = 20150

=> 100x + ( 1+2+...+100 ) = 20150

100x + 5050 = 20150

100x = 20150 - 5050

100x = 15100

x = 15100 : 100

x = 151

15 tháng 6 2017

Ta có : (x + 1) + (x + 2) + (x + 3) + (x + 4) + (x + 5) = 90

<=> x + x + x+ x + x + (1 + 2 + 3 + 4 + 5) = 90

<=> 5x + 15 = 90

=> 5x = 75

=> x = 15 

9 tháng 6 2018

=> ĐK:  \(x\ne\left\{0;-1;-2;...;-99;-100\right\}\)

Đây là dạng dãy số đặc biệt, bạn có thể giải như sau:

Ta có:

\(\frac{1}{x\left(x+1\right)}+\frac{1}{\left(x+1\right)\left(x+2\right)}+...+\frac{1}{\left(x+99\right)\left(x+100\right)}=\frac{100}{101}\)

\(\Leftrightarrow\frac{1}{x}-\frac{1}{x+1}+\frac{1}{x+1}-\frac{1}{x+2}+...+\frac{1}{x+99}-\frac{1}{x+100}=\frac{100}{101}\)

\(\Leftrightarrow\frac{1}{x}-\frac{1}{x+100}=\frac{100}{101}\)

\(\Leftrightarrow\frac{x+100-x}{x.\left(x+100\right)}=\frac{100}{101}\)

\(\Leftrightarrow\frac{100}{x^2+100x}=\frac{100}{101}\)

\(\Leftrightarrow x^2+100x=101\)

\(\Leftrightarrow x^2+100x-101=0\)

\(\Leftrightarrow x^2+101x-x-101=0\)

\(\Leftrightarrow x\left(x+101\right)-\left(x+101\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x+101\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x-1=0\\x+101=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=1\left(n\right)\\x=-101\left(n\right)\end{cases}}\)

Vậy: S={1;-101)