K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 1 2019

Đáp án D

Mệnh đề phủ định của mệnh đề  P : " ∀ x ∈ ℝ , 2 x − 9 = 0 " là P ¯ : " ∃ x ∈ ℝ , 2 x − 9 ≠ 0 "  

 

29 tháng 8 2019

17 tháng 12 2017

Chú ý: Mệnh đề phủ định của mệnh đề  " ∃ x ∈ X , P ( x ) " là " ∀ x ∈ X , P ( x ) ¯ " .

Đáp án C.

9 tháng 10 2017

16 tháng 4 2017

Đáp án B

12 tháng 3 2019

Đáp án D

11 tháng 11 2018

Đáp án C.

Giải thích

M = x ∈ R : x ≥ - 3 = [ - 3 ; + ∞ ) N = x ∈ R : - 2 ≤ x ≤ 1 = [ - 2 ; 1 ] P = x ∈ R : - 5 < x ≤ 0 = ( - 5 ; 0 ]

Ta thấy rằng  - 2 ; 1 ⊂ [ - 3 ; + ∞ )   d o   đ ó   N ⊂ M

16 tháng 10 2017

Đáp án C

Phủ định của mệnh đề P(x) là

  P ( x ) : ¯ " ∀ x ∈ ℝ , 5 x − 3 x 2 ≠ 1 "

bài 1: xét đúng(sai) mệnh đề và phủ định các mệnh đề sau: a) ∃x ∈ ℝ,x^3 - x^2 +1 > 0 b) ∀x ∈ ℝ,x^4 - x^2 +1=(x^2+ √3x +1)(x^2-√3x+1) bài 2: xác định tính đúng-sai của các mệnh đề sau : a)∀x ∈ R,x > -2 ⇒ x^2 > 4 b)∀x ∈ N,x >2 ⇔x^2 > 4 bài 3: a) Cho mệnh đề P:''Với mọi số thực x,nếu x là số hữu tỉ thì 2x là số hữu tỉ''. Dùng kí hiệu viết P,P có dấu gạch ngang ở trên(mệnh đề phủ định của P) và xác định tính...
Đọc tiếp

bài 1: xét đúng(sai) mệnh đề và phủ định các mệnh đề sau:

a) ∃x ∈ ℝ,x^3 - x^2 +1 > 0

b) ∀x ∈ ℝ,x^4 - x^2 +1=(x^2+ √3x +1)(x^2-√3x+1)

bài 2: xác định tính đúng-sai của các mệnh đề sau :

a)∀x ∈ R,x > -2 ⇒ x^2 > 4 b)∀x ∈ N,x >2 ⇔x^2 > 4

bài 3: a) Cho mệnh đề P:''Với mọi số thực x,nếu x là số hữu tỉ thì 2x là số hữu tỉ''.

Dùng kí hiệu viết P,P có dấu gạch ngang ở trên(mệnh đề phủ định của P) và xác định tính đúng-sai của cả 2 mệnh đề.

b) Phát biểu mệnh đề đảo của P và chứng tỏ mệnh đề đó là đúng.Phát biểu mệnh đề dưới dạng mệnh đề tương đương

Bài 4: Xét tính đúng sai của các mệnh đề sau:

a) P: ''∀x ∈ R,∀y ∈ R: x + y = 1'' b) Q:'' ∃x ∈ R, ∃y ∈ R: x + y = 2''

Mọi người giải hộ để em đối chiếu đáp án của mình với ạ,em cảm ơn.

1
NV
1 tháng 7 2019

Bài 1:

a/ Với \(x=0\Rightarrow0-0+1>0\) đúng

Vậy mệnh đề đúng

Phủ định: \(\forall x\in R;x^3-x^2+1\le0\)

Hoặc: \(∄x\in R,x^3-x^3+1>0\)

b/ \(x^4-x^2+1=\left(x^2+1\right)^2-3x^2=\left(x^2+\sqrt{3}x+1\right)\left(x^2-\sqrt{3}x+1\right)\)

Vậy mệnh đề đã cho là đúng

Phủ định: \(\exists x\in R,x^4-x^2+1\ne\left(x^2+\sqrt{3}x+1\right)\left(x^2-\sqrt{3}x+1\right)\)

Câu 2:

a/ Với \(x=0\Rightarrow0>-2\) nhưng \(0^2< 4\)

\(\Rightarrow\) Mệnh đề sai

b/ Mệnh đề đúng do \(x\in N\Rightarrow x\ge0\)

\(x>2\Rightarrow x^2>4\) (2 vế của BĐT đều không âm thì có thể bình phương 2 vế)

Câu 3:

P là mệnh đề đúng

\(P:\) "\(\forall x\in R,x\in Q\Rightarrow2x\in Q\)"

\(\overline{P}:\) "\(\exists x\in R,x\in Q\Rightarrow2x\notin Q\)"

\(\overline{P}\) là mệnh đề sai

Chứng minh P đúng:

Do x hữu tỉ, đặt \(x=\frac{a}{b}\) với a; b là các số nguyên \(\left(a;b\right)=1\)\(b\ne0\)

\(\Rightarrow2x=\frac{2a}{b}\)

Do a nguyên \(\Rightarrow2a\) nguyên \(\Rightarrow\frac{2a}{b}\) hữu tỉ

b/ Mệnh đề đảo của P:

" Với mọi số thực x, nếu 2x là số hữu tỉ thì x là số hữu tỉ"

Chứng minh tương tự như trên

c/ "Với mọi số thực x thì x là số hữu tỉ khi và chỉ khi 2x là số hữu tỉ"

Bài 4:

a/ Là mệnh đề sai, ví dụ \(x=1;y=1\)

b/ Là mệnh đề đúng, ví dụ: \(x=1;y=1\)

9 tháng 4 2019

Đáp án B