K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 8 2019

Chọn A.

Ta có 3cosα+ 2sinα = 2  hay (3cosα+ 2sinα = 2 )= 4

Tương đương: 9 cos2 α + 12 cosα .sin α + 4sin2α = 4

Hay 5cos2α +  12 cosα .sin α = 0

Từ đó: cosα= 0 hoặc 5cosα + 12 sinα = 0

+ Nếu cosα = 0 thì sinα =1: loại ( vì sinα < 0).

+ 5cosα + 12 sinα = 0 

ta có hệ phương trình 

 

18 tháng 3 2017

Chọn A.

Ta có : P = sin3 α + cos3 α = ( sinα + cosα) 3 - 3sin α.cosα(sinα + cosα)

Ta có (sin α + cos α) 2 = sin2α + cos2α +  2sinα.cosα = 1 + 24/25 = 49/25.

Vì sin α + cosα > 0  nên ta chọn sinα + cosα = 7/5.

Thay  vào P ta được 

22 tháng 4 2018

Chọn D.

Ta có ( sinα - cosα) 2 + (sinα + cosα) 2 = 2( sin2α +  cos2α)  = 2.

Suy ra (sinα - cosα) 2 = 2 - ( sinα + cos α) 2 = 2 - 5/4 = 3/4.

Do  suy ra sinα < cosα  nên sinα - cosα <  0.

Vậy 

24 tháng 8 2019

Chọn A.

Ta có 

Khi đó 

Do đó, 

28 tháng 10 2019

20 tháng 4 2017

Chọn C.

Ta có 

24 tháng 7 2018

Đáp án đúng : C

21 tháng 2 2017

28 tháng 4 2019

23 tháng 8 2019

Chọn D.

Ta có 

Mà