Cho bốn hàm số y = 2 sin x , y = x 1 3 , y = x 2 + x + 1 , y = 2 x + 1 x 2 + 1 . Số các hàm số có tập xác định là ℝ bằng:
A. 3
B. 2
C. 1
D. 4
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.
\(y'=12x+\dfrac{4}{x^2}\)
2.
\(y'=\dfrac{3}{\left(-x+1\right)^2}\)
3.
\(y'=\dfrac{2x-3}{2\sqrt{x^2-3x+4}}\)
4.
\(y=\dfrac{x^3+3x^2-x-3}{x-4}\)
\(y'=\dfrac{\left(3x^2+6x-1\right)\left(x-4\right)-\left(x^3+3x^2-x-3\right)}{\left(x-4\right)^2}=\dfrac{2x^3-9x^2-24x+7}{\left(x-4\right)^2}\)
5.
\(y'=-\dfrac{4x-3}{\left(2x^2-3x+5\right)^2}\)
6.
\(y'=\sqrt{x^2-1}+\dfrac{x\left(x+1\right)}{\sqrt{x^2-1}}\)
Bài 19:
f(3)=2x3+3=9
f(-2)=-4+3=-1
Bài 20:
f(3)=15/3=5
f(5)=15/5=3
f(-2)=15/-2=-15/2
Bài 22:
Thay x=-2 vào y=3x, ta được:
y=3x(-2)=-6
Vậy: A(-2;6) thuộc đồ thị hàm số y=3x
Bài 19:
f(3)=2x3+3=9
f(-2)=-4+3=-1
Bài 20:
f(3)=15/3=5
f(5)=15/5=3
f(-2)=15/-2=-15/2
Bài 22:
Thay x=-2 vào y=3x, ta được:
y=3x(-2)=-6
Vậy: A(-2;6) thuộc đồ thị hàm số y=3x
\(y'=x^2-2x+1=\left(x-1\right)^2\ge0\) ;\(\forall x\in R\)
\(\Rightarrow\) Hàm đồng biến trên R
Đáp án đúng : A