K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 11 2021

\(A=4+2^2+2^3+...+2^{2005}\)

\(2A=4+2^2+2^3+...+2^{2006}\)

\(2A-A=\left(4+2^2+2^3+...+2^{2006}\right)-\left(4+2^2+2^3+...+2^{2005}\right)\)

\(A=4+2^2+2^3+...+2^{2006}-4-2^2-2^3-...-2^{2005}\)

\(A=2^{2006}\)

Vậy A là 1 luỹ thừa của cơ số 2

7 tháng 11 2021

\(B=5+5^2+...+5^{2021}\)

\(5B=5^2+5^3+...+5^{2022}\)

\(5B-B=\left(5^2+5^3+...+5^{2022}\right)-\left(5+5^2+...+5^{2021}\right)\)

\(4B=5^{2022}-5\)

\(B=\frac{5^{2022}-5}{4}\)

\(B+8=\frac{5^{2022}-5}{4}+8\)

\(B+8=\frac{5^{2022}-5}{4}+\frac{32}{4}\)

\(B+8=\frac{5^{2022}-5+32}{4}\)

\(B+8=\frac{5^{2022}+27}{4}\)

=> B + 8 k thể là số b/ph của 1 số tn 

AH
Akai Haruma
Giáo viên
13 tháng 12 2021

Lời giải:
$(2300-22):1+1=2279$

Tổng $A$ là:
$4+\frac{(2300+22).2279}{2}=2645923$. Số này lẻ nên không thể là lũy thừa cơ số 2. 

13 tháng 12 2021

THI TỰ LÀM

13 tháng 12 2021

=(( thi với thằng em 

 

2 tháng 11 2021

\(\Rightarrow2A=8+2^3+...+2^{2022}\\ \Rightarrow2A-A=8+2^3+...+2^{2022}-4-2^2-...-2^{2021}\\ \Rightarrow A=8+2^{2022}-4-2^2=8-4-4+2^{2022}=2^{2022}\left(đpcm\right)\)

2 tháng 11 2021

\(A=2^2+2^2+2^3+...+2^{2021}=2^3+2^4+...+2^{2021}=2^{2022}\left(đpcm\right)\)

AH
Akai Haruma
Giáo viên
29 tháng 1 2022

Bài 4:

$A+2=1+2+2^2+2^3+...+2^{11}$

$=(1+2)+(2^2+2^3)+....+(2^{10}+2^{11})$

$=(1+2)+2^2(1+2)+....+2^{10}(1+2)$

$=(1+2)(1+2^2+....+2^{10})$

$=3(1+2^2+...+2^{10})\vdots 3$

Vậy $A+2\vdots 3$ nên $A$ không chia hết cho $3$

AH
Akai Haruma
Giáo viên
29 tháng 1 2022

Bài 5:

$n^2+n+1=n(n+1)+1$
Vì $n,n+1$ là hai số tự nhiên liên tiếp nên sẽ tồn tại một số chẵn và 1 số lẻ

$\Rightarrow n(n+1)$ chẵn 

$\Rightarrow n^2+n+1=n(n+1)+1$ lẻ (điều phải chứng minh) 

 

10 tháng 11 2021

10 tháng 11 2021

Bài đâu ạ?

14 tháng 11 2023

Đễ