K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 11 2021

10 tháng 11 2021

Bài đâu ạ?

2 tháng 11 2021

\(\Rightarrow2A=8+2^3+...+2^{2022}\\ \Rightarrow2A-A=8+2^3+...+2^{2022}-4-2^2-...-2^{2021}\\ \Rightarrow A=8+2^{2022}-4-2^2=8-4-4+2^{2022}=2^{2022}\left(đpcm\right)\)

2 tháng 11 2021

\(A=2^2+2^2+2^3+...+2^{2021}=2^3+2^4+...+2^{2021}=2^{2022}\left(đpcm\right)\)

DD
7 tháng 10 2021

\(A=4+2^2+2^3+...+2^{2005}\)

\(2A=8+2^3+2^4+...+2^{2006}\)

\(2A-A=\left(8+2^3+2^4+...+2^{2006}\right)-\left(4+2^2+2^3+...+2^{2005}\right)\)

\(A=8+2^{2006}-\left(4+2^2\right)\)

\(A=2^{2006}\)

suy ra đpcm. 

8 tháng 10 2021

Cảm ơn bạn nha

7 tháng 11 2021

\(A=4+2^2+2^3+...+2^{2005}\)

\(2A=4+2^2+2^3+...+2^{2006}\)

\(2A-A=\left(4+2^2+2^3+...+2^{2006}\right)-\left(4+2^2+2^3+...+2^{2005}\right)\)

\(A=4+2^2+2^3+...+2^{2006}-4-2^2-2^3-...-2^{2005}\)

\(A=2^{2006}\)

Vậy A là 1 luỹ thừa của cơ số 2

7 tháng 11 2021

\(B=5+5^2+...+5^{2021}\)

\(5B=5^2+5^3+...+5^{2022}\)

\(5B-B=\left(5^2+5^3+...+5^{2022}\right)-\left(5+5^2+...+5^{2021}\right)\)

\(4B=5^{2022}-5\)

\(B=\frac{5^{2022}-5}{4}\)

\(B+8=\frac{5^{2022}-5}{4}+8\)

\(B+8=\frac{5^{2022}-5}{4}+\frac{32}{4}\)

\(B+8=\frac{5^{2022}-5+32}{4}\)

\(B+8=\frac{5^{2022}+27}{4}\)

=> B + 8 k thể là số b/ph của 1 số tn 

22 tháng 10 2019

Câu hỏi của phamvanquyettam - Toán lớp 6 - Học toán với OnlineMath

28 tháng 6 2016

Ta có: A = 4 + 22 + 23 + .... +220

       2A = 8 + 23 + 24 + .......+221

=> 2A - A = 221 +8 - 4 - 22

=> A = 221 là 1 lũy thừa của 2 (Đpcm) 

28 tháng 6 2016

A=4+22+23+............+220

A=2+2+22+23+............+220

2A=22+22+23+...+221

A=2A-A=(22+22+23+...+221)-(2+2+22+23+............+220)

A=221

26 tháng 9 2021

\(A=2^2+2^2+2^3+...+2^{2005}\\ 2A=2^3+2^3+2^4+...+2^{2006}\\ 2A-A=\left(2^3+2^3+2^4+...+2^{2006}\right)-\left(2^2+2^2+2^3+...+2^{2005}\right)\\ A=2^{2006}\)

26 tháng 9 2021

Chi tiết:

\(A=4+2^2+2^3+...+2^{2005}\\ 2A=4\cdot2+2^3+2^4+...+2^{2006}\\ 2A-A=\left(4\cdot2+2^3+2^4+...+2^{2006}\right)-\left(4+2^2+2^3+...+2^{2005}\right)\\ A=4\cdot2+2^{2006}-4-2^2=2^{2006}\left(Đpcm\right)\)