chứng tỏ
335+2312+232003 không là số chính phương
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Một số được coi là scp nếu khi phân tích ra dạng các thừa số nguyên tố thì số mũ ứng với mỗi thừa số nguyên tố đó phải chẵn.
$23^5+23^{12}+23^{2003}=23^5(1+23^7+23^{1998})$ chia hết cho $23^5$ nhưng không chia hết cho $23^6$ (do $1+23^7+23^{1998}\not\vdots 23$)
Tức là khi phân tích ra thừa số nguyên tố thì $23^5+23^{12}+23^{2003}$ chứa thừa số nguyên tố là 23 nhưng số mũ tối đa là 5 (là số lẻ)
Do đó số trên không phải scp.
câu trả lời là không nhé.. ta có thể chứng minh:
Giả sử : A,B là 2 số chính phương... \(\sqrt{A}=a\)
\(\sqrt{B}=b\) c là số không chính phương.
tích A.B.c.......... \(\sqrt{A.Bc}=a.b\sqrt{c}\)mà c ko là số chính phương suy ra tích 3 số này ko là số chính phương nha
2.
Gọi x;x+1;x+2;x+3 là 4 số tự nhiên liên tiếp ( x\(\in\) N)
Ta có : x (x+1) (x+2 ) (x+3 ) +1
=( x2 + 3x ) (x2 + 2x + x +2 ) +1
= ( x2 + 3x ) (x2 +3x + 2 ) +1 (*)
Đặt t = x2 + 3x thì (* ) = t ( t+2 ) + 1= t2 + 2t +1 = (t+1)2 = (x2 + 3x + 1 )2
=> x (x+1) (x+2 ) (x+3 ) +1 là số chính phương
hay tích 4 số tự nhiên liên tiếp cộng 1 là số chính phương
Gọi x;x+1;x+2;x+3 là 4 số tự nhiên liên tiếp ( x
∈
∈ N)
Ta có : x (x+1) (x+2 ) (x+3 ) +1
=( x2 + 3x ) (x2 + 2x + x +2 ) +1
= ( x2 + 3x ) (x2 +3x + 2 ) +1 (*)
Đặt t = x2 + 3x thì (* ) = t ( t+2 ) + 1= t2 + 2t +1 = (t+1)2 = (x2 + 3x + 1 )2
=> x (x+1) (x+2 ) (x+3 ) +1 là số chính phương
hay tích 4 số tự nhiên liên tiếp cộng 1 là số chính phương