Chứng minh Căn (1-1/xy) là số hữu tỉ biết x và y đều là số hữu tỉ và x^3+y^3=2x^2*y^2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
trong vở bài tập toán lớp 7 tập 1 xoắn 11 bài 115 có bài tương tự đó bạn
xét 1-1/xy:
=(xy-1)/xy
nhân 4x^3y^3 vào bt:
(4x^4y^4-4x^3y^3)/4x^4y^4
thay 4x^4y^4=(x^3+y^3)^2:
=[(x^3+y^3)^2-4x^3y^3]/(x^3+y^3)^2
=(x^6+y^6-2x^3y^3)/(x^3+y^3)^2
=(x^3-y^3)^2/(x^3+y^3)^2
=>căn(1-1/xy)=lx^3-y^3l / lx^3+y^3l là số hữu tỉ
Cô phải đọc rất kĩ mới hiểu bài của Minh. Lần sau em chú ý dùng công thức có trong phần \(f\left(x\right)\)để bài làm được trực quan hơn.
Cảm ơn em đã trình bày bài giải !
Với y = 0 thi 1 - xy = 0 là bình phương của số hữu tỷ
Với y \(\ne0\)thì ta chia 2 vế cho y4 thì được
\(\frac{x^5}{y^4}+y=2\frac{x^2}{y^2}\)
\(\Leftrightarrow-y=\frac{x^5}{y^4}-2\frac{x^2}{y^2}\)
\(\Leftrightarrow-xy=\frac{x^6}{y^4}-2\frac{x^3}{y^2}\)
\(\Leftrightarrow\Leftrightarrow1-xy=\frac{x^6}{y^4}-2\frac{x^3}{y^2}+1=\left(\frac{x^3}{y^2}-1\right)^2\)
Vậy 1 - xy là bình phương của 1 số hữu tỷ