Tập nghiệm của bất phương trình x 2 + 3x - 4 > 0 là:
A. ( - ∞ ;-4) ∪ (1; + ∞ )
B. [-4;1]
C. (-4;1)
D. ( - ∞ ;-4] ∪ [1; + ∞ )
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
hoc gioi the hihiihihihhhihihihihiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
,mnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn
Chọn C.
Ta có :
+) 4 - 3x = 0 ⇔ x = 4/3
+) -2 x 2 + 3x - 1 = 0
Lập bảng xét dấu :
Vậy tập nghiệm của bất phương trình (4 - 3x)(-2 x 2 + 3x - 1) ≤ 0 là
Chọn B.
Ta có:
Tập nghiệm của hệ bất phương trình là S = [-3;3).
Ta có: 5x – 2(4- x) >0
⇔ 5 x - 8 + 2 x > 0 ⇔ 7 x > 8 ⇔ x > 8 7
Tập nghiệm của bất phương trình đã cho là: S = 8 7 ; + ∞
Đáp án C.
- Phương pháp:
+) Tính f'(x).
+) Sử dụng quy tắc trong trái ngoài cùng giải bất phương trình bậc hai.
- Cách giải:
+ Ta có:
→ Vậy tập nghiệm của bất phương trình là
Đáp án A.
Ta có: x 2 + 3x - 4 > 0 ⇔ (x - 1)(x + 4) > 0
Ta có bảng xét dấu vế trái của bất phương trình là:
Dựa vào bảng xét dấu ta thấy, tập nghiệm của bất phương trình là: ( - ∞ ;-4) ∪ (1; + ∞ )