Bộ bài tú - lơ khơ có 52 quân bài. Rút ngẫu nhiên ra 4 quân bài. Tính xác suất của các biến cố A: “Rút ra được tứ quý K”.
A. P ( A ) = 1 270725
B. P ( A ) = 4 270725
C. P ( A ) = 1 6497400
D. P ( A ) = 1 54145
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Không gian mẫu: \(n(\Omega)=C^3_{52}=22100\)
Rút được 2 con K từ 4 con: \(C^2_4=6\)
Rút con còn lại từ 52-4=48 (lá còn lại): \(C_{48}^1=48\)
\(\Rightarrow n\left(A\right)=6.48=288\)
\(\Rightarrow p\left(A\right)=\dfrac{288}{22100}=\dfrac{72}{5525}\)
Gọi A là biến cố: "Trong 5 quân bài lấy ra phải có quân 2 rô, quân 3 pích, quân 6 cơ, quân 10 nhép và quân K cơ''.
=> n(A) =1
Vì lấy quân 2 rô có 1 cách.
Lấy quân 3 pích có 1 cách.
Lấy quân 6 cơ có 1 cách.
Lấy quân 10 nhép có 1 cách.
Lấy quân K cơ có 1 cách.
\(\Rightarrow\) P(A) = 1/C5 (52)
Lời giải:
Rút 5 trong 52 lá bài, có $C^5_{52}$ kết quả.
Rút 5 lá 10, J, Q, K, A đồng chất, có 4 kết quả (bích, tép, cơ, rô)
Xác suất rút được 5 lá thỏa mãn đề: $\frac{4}{C^5_{52}}$
Số phần tử của không gian mẫu: \(\left|\Omega\right|=C^4_{52}\)
a) Gọi A là biến cố: "4 quân đều thuộc 1 bộ."
Ta thấy ngay \(\left|A\right|=4.C^4_{13}\)
\(\Rightarrow P\left(A\right)=\dfrac{\left|A\right|}{\left|\Omega\right|}=\dfrac{4.C^4_{13}}{C^4_{52}}=\dfrac{44}{4165}\)
b) Gọi B là biến cố: "4 quân chỉ khác nhau về bộ."
Dễ thấy \(\left|B\right|=13^4\)
Do đó \(P\left(B\right)=\dfrac{\left|B\right|}{\left|\Omega\right|}=\dfrac{13^4}{C^4_{52}}=\dfrac{2197}{20825}\)
Số phần tử của không gian mẫu:
a) Gọi A là biến cố: "4 quân đều thuộc 1 bộ."
Ta thấy ngay
b) Gọi B là biến cố: "4 quân chỉ khác nhau về bộ."
Dễ thấy
Do đó
đây nha
Ta có số cách chọn ngẫu nhiên 4 quân bài là: C 52 4 = 270725
Suy ra Ω = 270725
Vì bộ bài chỉ có 1 tứ quý K nên ta có Ω A = 1
Vậy P ( A ) = 1 270725
Đáp án A