K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 11 2019

Ta có số cách chọn ngẫu nhiên 4 quân bài là:  C 52 4 =    270725

Suy ra  Ω = 270725

Vì bộ bài chỉ có 1 tứ quý K nên ta có  Ω A = 1

Vậy  P ( A ) =   1 270725

Đáp án A

2 tháng 4 2019

Đáp án D

23 tháng 5 2017

Đáp án D

19 tháng 12 2020

Không gian mẫu: \(n(\Omega)=C^3_{52}=22100\)

Rút được 2 con K từ 4 con: \(C^2_4=6\)

Rút con còn lại từ 52-4=48 (lá còn lại): \(C_{48}^1=48\)

\(\Rightarrow n\left(A\right)=6.48=288\)

\(\Rightarrow p\left(A\right)=\dfrac{288}{22100}=\dfrac{72}{5525}\)

9 tháng 12 2016

Gọi A là biến cố: "Trong 5 quân bài lấy ra phải có quân 2 rô, quân 3 pích, quân 6 cơ, quân 10 nhép và quân K cơ''.
=> n(A) =1
Vì lấy quân 2 rô có 1 cách.
Lấy quân 3 pích có 1 cách.
Lấy quân 6 cơ có 1 cách.
Lấy quân 10 nhép có 1 cách.
Lấy quân K cơ có 1 cách.
\(\Rightarrow\) P(A) = 1/C5 (52)

AH
Akai Haruma
Giáo viên
12 tháng 8 2023

Lời giải:

Rút 5 trong 52 lá bài, có $C^5_{52}$ kết quả.

Rút 5 lá 10, J, Q, K, A đồng chất, có 4 kết quả (bích, tép, cơ, rô) 

Xác suất rút được 5 lá thỏa mãn đề: $\frac{4}{C^5_{52}}$

24 tháng 8 2023

Số phần tử của không gian mẫu: \(\left|\Omega\right|=C^4_{52}\)

a) Gọi A là biến cố: "4 quân đều thuộc 1 bộ."

Ta thấy ngay \(\left|A\right|=4.C^4_{13}\)

\(\Rightarrow P\left(A\right)=\dfrac{\left|A\right|}{\left|\Omega\right|}=\dfrac{4.C^4_{13}}{C^4_{52}}=\dfrac{44}{4165}\)

b) Gọi B là biến cố: "4 quân chỉ khác nhau về bộ."

Dễ thấy \(\left|B\right|=13^4\)

Do đó \(P\left(B\right)=\dfrac{\left|B\right|}{\left|\Omega\right|}=\dfrac{13^4}{C^4_{52}}=\dfrac{2197}{20825}\)

24 tháng 8 2023

Số phần tử của không gian mẫu: ∣Ω∣=�524

a) Gọi A là biến cố: "4 quân đều thuộc 1 bộ."

Ta thấy ngay ∣�∣=4.�134

⇒�(�)=∣�∣∣Ω∣=4.�134�524=444165

b) Gọi B là biến cố: "4 quân chỉ khác nhau về bộ."

Dễ thấy ∣�∣=134

Do đó �(�)=∣�∣∣Ω∣=134�524=219720825

đây nha