K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 1 2020

Đáp án B

Gọi số học sinh nữ trong nhóm A là x  ( x ∈ ℕ * )

Gọi số học sinh nam trong nhóm B là y  ( y ∈ ℕ * ) .

=> Số học sinh nữ trong nhóm B là 25 – 9 – x = 16 – x – y => x + y < 16

Khi đó, Nhóm A: 9 nam, x nữ và nhóm B: y nam, 16 – x – y nữ.

Xác suất để chọn được hai học sinh nam là

C 9 1 . C y 1 C 9 + x 1 . C 25 - 9 - x 1 = 0 , 54

⇔ 9 y ( 9 + x ) ( 16 - x ) = 27 50 .

⇒ y = 30 50 ( 9 + x ) ( 16 - x ) ⇒ x < 16 .

Vì  y ∈ ℕ * ⇒ 3 50 ( 9 + x ) ( 16 - x ) ∈ N * .

=> (x, y) = {(1; 9), (6; 9), (11; 6)}.

Mặt khác x + y < 16

( Khi chia nhóm thì A,B có vai trò như nhau nên có 2 cặp thỏa mãn )

Vậy xác suất để chọn đươc hai học sinh nữ là 0,04.

21 tháng 10 2019

Chọn A

Lời giải. Gọi số học sinh nữ trong nhóm A là  x ( x ∈ ℕ * )

Gọi số học sinh nam trong nhóm B là  y ( y ∈ ℕ * )

Suy ra số học sinh nữ trong nhóm B là

25 - 9 - x - y = 16 - x - y

Khi đó, nhóm A có: 9 nam, x nữ và nhóm B có

y nam, 16 - x - y nữ

Xác suất để chọn được hai học sinh nam là

Mặt khác x + y < 16

Vậy xác suất để chọn đươc hai học sinh nữ là

C 1 1 . C 6 1 C 10 1 . C 15 1 = 0 , 04

30 tháng 5 2019

12 tháng 3 2019

Đáp án B

Gọi x,y lần lượt là số học sinh nữ ở nhóm I và nhóm II. Khi đó số học sinh nam ở nhóm II là  25 − 9 + x − y = 16 − x − y   . Điều kiện để mỗi nhóm đều có học sinh nam và nữ là x ≥ 1, y ≥ 1,16 − x − y ≥ 1 ;    x , y ∈ ℕ .

Xác suất để chọn ra được hai học sinh nam bằng  C 9 1 C 16 − x − y 1 C 9 + x 1 C 16 − x 1 = 0,54

⇔ 9 16 − x − y 9 + x 16 − x = 0,54 ⇔ 144 − 9 x − 9 y 144 + 7 x − x 2 = 0,54 ⇔ y = 184 25 − 71 50 x + 3 50 x 2

Ta có hệ điều kiện sau  x ≥ 1 184 25 − 71 50 x + 3 50 x 2 ≥ 1 16 − x − 184 25 − 71 50 x + 3 50 x 2 ≥ 1 x ∈ ℕ

⇔ x ≥ 1 3 50 x 2 − 71 50 x + 159 25 ≥ 0 − 3 50 x 2 + 21 50 x + 191 25 ≥ 0 x ∈ ℕ ⇔ x ≥ 1 x ≥ 53 3 x ≤ 6 21 − 5 201 6 ≤ x ≤ 21 + 5 201 6 x ∈ ℕ ⇔ 1 ≤ x ≤ 6 x ∈ ℕ

Ta có bảng các giá trị của :

Vậy ta tìm được hai cặp nghiệm nguyên x ; y  thỏa mãn điều kiện là   1 ; 6 và  6 ; 1   .

Xác suất để chọn ra hai học sinh nữ là C x 1 C y 1 C 9 + x 1 C 16 − x 1 = x y 9 + x 16 − x .

Nếu x ; y ∈ 1 ; 6 , 6 ; 1  thì xác suất này bằng 1 25 = 0,04 .

25 tháng 10 2017

Đáp án C

Số cách chọn ngẫu nhiên là  C 10 3

Số cách chọn ba học sinh đủ hai lớp A và B là  C 6 2 C 4 1 + C 6 1 C 4 2

Xác suất cần tính bằng

29 tháng 11 2019

29 tháng 12 2018

Đáp án C

4 tháng 3 2018

Đáp án C.

Phương pháp giải: Áp dụng các quy tắc đếm cơ bản

Lời giải:

Chọn 3 học sinh trong 10 học sinh có C 10 3  cách => n ( Ω ) = C 10 3 = 120 .  

Gọi  X  là biến cố trong 3 học sinh được chọn có ít nhất một học sinh nữ

Ta xét các trường hợp sau:

TH1. Chọn 1 học sinh nữ và 2 học sinh nam => có  C 7 2 . C 3 1 = 63  cách.

TH2. Chọn 2 học sinh nữ và 1 học sinh nam => có C 7 1 . C 3 2 = 21  cách.

TH3. Chọn 3 học sinh nữ và 0 học sinh nam => có C 3 3 = 1  cách.

Suy ra số kết quả thuận lợi cho biến cố X là n(X) = 63 + 21 + 1 = 85.

Vậy xác suất cần tính là  P = n ( X ) n ( Ω ) = 85 120 = 17 24 .

21 tháng 12 2022

`n(\Omega)=C_10 ^3`

Gọi `\overline A:"` Chọn `3` h/s mà trong đó không có h/s nữ`."`

  `=>n(\overline A)=C_7 ^3`

 `=>P(A)=1-[C_7 ^3]/[C_10 ^3]=17/24`