Cho hình chóp S.ABC có ABC là tam giác vuông cân tại B, AB = BC = 2a, S A B ^ = S C B ^ = 90 ° . Và khoảng cách từ A đến mặt phẳng (SBC) bằng a 2 Tính diện tích mặt cầu ngoại tiếp S.ABC theo a.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án D
Gọi K là trung điểm của BC.
nên dễ dàng nhận thấy trung điểm I của SB là tâm mặt cầu ngoại tiếp chóp SABC.
Gọi M là trung điểm của AC. Tam giác ABC vuông tại B, ta có MA = MB = MC.
mặt khác IA = IB = IC, do đó IM là trục của đường tròn ngoại tiếp tam giác ABC hay IM ⊥ (ABC)
Xét tam giác vuông IMA ta có
Vậy diện tích mặt cầu ngoại tiếp chóp SABC là
Đáp án A.
Theo giả thiết ta có SO ⊥ (ABC). Gọi D là điểm đối xưng với B qua O
=> ABCD là hình vuông => AB//CD
=> d(AB;SC) = d(AB;(SCD)) = d(E;(SCD)) = 2d(O;(SCD))(Với E, F lần lượt là trung điểm của AB và CD).
Áp dung tính chất tứ diện vuông cho tứ diện OSCD ta có:
Đáp án B
Dựng hình vuông ABCH
Ta có: A B ⊥ A H A B ⊥ S A ⇒ A B ⊥ S H , tương tự B C ⊥ S H
Do đó S H ⊥ A B C
Lại có A H / / B C ⇒ d A ; S B C = d H ; S B C
Dựng H K ⊥ S C ⇒ d H ; S B C − H K = a 2
Do đó 1 S H 2 = 1 H K 2 − 1 H C 2 ⇒ S H = a 6 .
Tứ giác ABCH nội tiếp nên R S . A B C = R S . A B C H = S H 2 4 + r 2 d
= S H 2 4 + A C 2 2 = a 3 ⇒ S = 4 π R 2 = 12 π a 2 .
Đáp án C
Dựng hình vuông ABCH
Ta có A B ⊥ A H A B ⊥ S A ⇒ A B ⊥ S H , tương tự B C ⊥ S H
Do đó S H ⊥ A B C
Lại có A H / / B C ⇒ d A ; S B C = d H ; S B C
Dựng H K ⊥ S C ⇒ d H ; S B C = H K = a 2
Do đó 1 S H 2 = 1 H K 2 − 1 H C 2 ⇒ S H = a 30 5
Tứ giác ABCH nội tiếp nên R S . A B C = R S . A B C H = S H 2 4 + r d 2
= S H 2 4 + A C 2 2 = a 2 ⇒ S = 4 π R 2 = 8 π a 2
Đáp án A
Gọi K là trung điểm của BC.
Do SAB ^ = SCB ^ = 90 o nên dễ dàng nhận thấy trung điểm I của SB là tâm mặt cầu ngoại tiếp chóp SABC.
Gọi M là trung điểm của AC.
Tam giác ABC vuông tại B, ta có MA = MB = MC , mặt khác IA = IB = IC , do đó IM là trục của đường tròn ngoại tiếp tam giác ABC hay IM ⊥ ABC
ĐÁP ÁN: D