Trong không gian Oxyz, cho điểm M (1;1;2). Mặt phẳng (P) qua M cắt các tia Ox, Oy, Oz lần lượt tại A, B, C sao cho thể tích tứ diện OABC nhỏ nhất. Gọi là một véc tơ pháp tuyến của (P). Tính S=a³-2b.
A. S=0.
B. S=-3.
C. S=6.
D. S=-15/8
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án D
Phương pháp: (Oxy): z = 0, (Oyz): x = 0, (Oxz): y = 0
Trục Oy: x = 0 y = t z = 0
Cách giải: M (1;0;3) ∈ (Oxz)
Chọn A
Mặt phẳng (P) cắt các tia Ox, Oy, Oz lần lượt tại A, B, C nên A (a;0;0), B (0;b;0), C (0;0;c) (a, b, c>0).
Phương trình mặt phẳng
+ Mặt phẳng (P) qua M nên
+ Thể tích khối tứ diện OABC:
Thể tích khối tứ diện OABC nhỏ nhất khi suy ra a=3, b=3, c=6.
Vậy S = 0