K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 9 2017

26 tháng 6 2019

10 tháng 3 2019

Đáp án D

Tọa độ các điểm

x 2 + y 4 + z 6 = 1

3 tháng 1 2020

Đáp án B

Vì (P) vuông góc với hai mặt phẳng (Oxy), (Oyz) và (Oxy) (Oyz) = Oy nên ta có (P) → Oy => n p   → =   j →  = (0; 1; 0)

Từ đó suy ra phương trình của mặt phẳng (P) là: 0(x - 2) + 1(y - 6 ) + 0(z + 3) = 0  y - 6 = 0

1 tháng 3 2018

Đáp án A

Phương trình của hai mặt phẳng (Oxy) và (Oxz) lần lượt là z = 0 và y = 0.

Điểm M(x ;y ;z) cách đều hai mặt phẳng đó khi và chỉ khi

1 tháng 4 2017

Giải:

a) Mặt phẳng (Oxy) qua điểm O(0 ; 0 ; 0) và có vectơ pháp tuyến (0 ; 0 ; 1) và là vectơ chỉ phương của trục Oz. Phương trình mặt phẳng (Oxy) có dạng:

0.(x - 0) +0.(y - 0) +1.(z - 0) = 0 hay z = 0.

Tương tự phương trình mặt phẳng (Oyz) là : x = 0 và phương trình mặt phẳng (Ozx) là: y = 0.

b) Mặt phẳng (P) qua điểm M(2; 6; -3) song song với mặt phẳng Oxy nhận (0 ; 0 ; 1) làm vectơ pháp tuyến. Phương trình mặt phẳng (P) có dạng: z +3 = 0.

Tương tự mặt phẳng (Q) qua M và song song với mặt phẳng Oyz có phương trình x - 2 = 0.

Mặt phẳng qua M song song với mặt phẳng Oxz có phương trình y - 6 = 0.

7 tháng 3 2017

Đáp án B

* Tam giác ABC có MN là đường trung bình nên MN // BC (1)

Tam giác ACD có NP là đường trung bình nên NP // CD (2)

Từ (1) và (2) suy ra: (MNP) song song mp( BCD) hay (MNP) song song mp(Oyz).

* Mà mặt phẳng (Oyz) có 1 vecto pháp tuyến là i → (1; 0; 0) nên mặt phẳng (MNP) có VTPT  i → (1; 0; 0).

* Điểm O(0; 0; 0). Gọi I(1; -2; 3) là trung điểm của AO. Suy ra; điểm I thuộc mặt phẳng (MNP).

* Phương trình mặt phẳng (MNP) là:

1(x- 1) + 0(y+ 2) + 0( z- 3) =0 hay x- 1= 0

Chọn B.

28 tháng 6 2018

19 tháng 7 2017

20 tháng 3 2017

Chọn A

Gọi A(a;0;0);B(0;b;0);C(0;0;c)

Phương trình mặt phẳng (P) có dạng:

Vì M là trực tâm của tam giác ABC nên:

Khi đó phương trình (P): 3x+2y+z-14=0.

Vậy mặt phẳng song song với (P) là: 3x+2y+z+14=0.