K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 5 2018

Đáp án A

29 tháng 1 2019

Đáp án A

Ta có tam giác AHD vuông tại A, suy ra

H D = A H 2 + D H 2 = a 2 4 + a 2 = a 5 2

Tam giác SHD vuông tại H, suy ra:

S H = S D 2 - H D 2 = 13 a 2 4 - 5 a 2 4 = a 2

Vậy  V S . A B C D = a 3 2 3

15 tháng 11 2019

Đáp án C

Ta có: Xét ∆ A D H vuông tại A có:

 

Xét  ∆ S D H vuông tại H có:

S H K D C = 5 S A B C D 8 = 5 a 2 8   (đvdt)

⇒ V S . H K D C = 1 3 . 5 a 2 8 . a 3 = 5 a 3 3 24    (đvtt)

26 tháng 8 2017

18 tháng 9 2019

28 tháng 3 2016

A B C D S E K H

Gọi H là trung điểm của AB, suy ra \(SH\perp\left(ACBD\right)\)

Do đó \(SH\perp HD\)  ta có :

\(SH=\sqrt{SD^2-DH^2}=\sqrt{SD^2-\left(AH^2+AD^2\right)}=a\)

Suy ra \(V_{s.ABCD}=\frac{1}{3}.SH.S_{ABCD}=\frac{a^2}{3}\)

Gọi K là hình chiếu vuông góc của H trên BD và E là hình chiếu vuông góc của H lên SK. Ta có :

\(\begin{cases}BD\perp HK\\BD\perp SH\end{cases}\) \(\Rightarrow BH\perp\) (SHK)

=> \(BD\perp HE\) mà \(HE\perp SK\) \(\Rightarrow HE\perp\) (SBD)

Ta có : HK=HB.\(\sin\widehat{KBH}\)\(=\frac{a\sqrt{2}}{4}\)

Suy ra \(HE=\frac{HS.HK}{\sqrt{HS^2+HK^2}}=\frac{a}{3}\)

Do đó \(d\left(A:\left(SBD\right)\right)\)=2d(H; (SBD)) =3HE=\(\frac{2a}{3}\)

 

 

30 tháng 3 2016

cau 7 de thi toan thpt quoc gia 2015

6 tháng 6 2017

23 tháng 11 2018

Đáp án A

5 tháng 9 2018

ĐÁP ÁN: A

28 tháng 2 2017

Đáp án là A