Mỗi đỉnh của một hình đa diện là đỉnh chung của ít nhất
A. Năm cạnh
B. Bốn cạnh
C. Ba cạnh
D. Hai cạnh
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chọn C.
Dựa vào định nghĩa khối đa diện. Mỗi cạnh là cạnh chung của đúng hai mặt.
Lấy một đỉnh B tùy ý của hình đa diện (H). Gọi M 1 là một mặt của hình đa diện (H) chứa B. Gọi A, B, C là ba đỉnh liên tiếp của M 1 . Khi đó AB, BC là hai cạnh của (H). Gọi M 2 là mặt khác với M 1 và có chung cạnh AB với M 1 . Khi đó M 2 còn có ít nhất một đỉnh D sao cho A, B, D là ba đỉnh khác nhau liên tiếp của M 2 . Nếu D ≡ C thì M 1 và M 2 có hai cạnh chung AB và BC, điều này vô lí. Vậy D phải khác C. Do đó qua đỉnh B có ít nhất ba cạnh BA, BC và BD.
Đáp án D
Đối với mỗi khối đa diện ta kí hiệu Đ là số đỉnh, C là số cạnh, M là số mặt và đa diện đều đó thuộc loại n ; p (khối đa diện lồi có các mặt là n – giác đều và mỗi đỉnh là đỉnh chung của p cạnh) thì p Đ = 2 C = n M .
Gọi khối đa diện thuộc loại n ; p (khối đa diện lồi có các mặt là n – giác đều và mỗi đỉnh là đỉnh chung của p cạnh)
Theo đề bài ta có: p=3.
Khi đó áp dụng công thức p Đ = 2 C = n M . Trong đó Đ, C, M lần lượt là số đỉnh, số cạnh và số mặt của khối đa diện.
3 Đ = 2 C ⇒ Đ = 2 C 3 .
Do đó Đ là số chẵn.
Đáp án C
Có ít nhất 3 cạnh xuất phát từ mỗi đỉnh của một hình đa diện.
a) AI là cạnh chung của hai tam giác AIB và AIC.
b) AC là cạnh chung của hai tam giác ACI và ACB.
c) AB là cạnh chung của hai tam giác ABI và ABC.
d) A là đỉnh chung của ba tam giác ABI, ACI và ABC.
e) B là đỉnh chung của hai tam giác ABI và ABC.
f) C là đỉnh chung của hai tam giác ACI và ABC.
Chọn C.