Cho b2 = ac. Chứng minh: \(\dfrac{a^2+b^2}{b^2+c^2}=\dfrac{a}{c}\) giải thích rõ hơn đc ko
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(\widehat{A}+\widehat{B}+\widehat{C}=180^o\) (tính chất tổng 3 góc trong 1 tam giác)
\(\Rightarrow\dfrac{\widehat{A}+\widehat{B}+\widehat{C}}{2}=90^o\)
\(\Rightarrow\dfrac{\widehat{B}+\widehat{C}}{2}=90^o-\dfrac{\widehat{A}}{2}\)
\(\Rightarrow\)\(tan\left(\dfrac{\widehat{B}+\widehat{C}}{2}\right)=tan\left(90^o-\widehat{\dfrac{A}{2}}\right)\)
\(\Rightarrow tan\left(\dfrac{\widehat{B}+\widehat{C}}{2}\right)=cot\dfrac{A}{2}\)
\(\dfrac{a}{c}=\dfrac{a^2+b^2}{b^2+c^2}\)
\(VP=\dfrac{a^2+ac}{ac+c^2}=\dfrac{a\left(a+c\right)}{c\left(a+c\right)}=\dfrac{a}{c}=VT\left(đpcm\right)\)
Xét \(\left(a^2+b^2\right).C-\left(b^2+c^2\right).a=a^2c+b^2a\)=\(b^2a-c^2a=a^2c+ac.c-ac.a=0\)
(thay \(b^2=ac\))
\(\Rightarrow\left(a^2+b^2\right).c=\left(b^2+c^2\right).a\Rightarrow\dfrac{a^2+b^2}{b^2+c^2}=\dfrac{a}{c}\)
Áp dụng công thức tỉ lệ phân số ta có :
\(\dfrac{a}{b}=\dfrac{c}{d}\)
\(\Rightarrow\dfrac{a^2}{b^2}=\dfrac{c^2}{d^2}=\dfrac{ac}{bd}\)
a.
Ta có: \(\dfrac{a^2}{b+c}+\dfrac{b+c}{4}\ge2\sqrt{\dfrac{a^2\left(b+c\right)}{4\left(b+c\right)}}=a\)
Tương tự: \(\dfrac{b^2}{c+a}+\dfrac{c+a}{4}\ge b\) ; \(\dfrac{c^2}{a+b}+\dfrac{a+b}{4}\ge c\)
Cộng vế:
\(\dfrac{a^2}{b+c}+\dfrac{b^2}{c+a}+\dfrac{c^2}{a+b}+\dfrac{a+b+c}{2}\ge a+b+c\)
\(\Leftrightarrow\dfrac{a^2}{b+c}+\dfrac{b^2}{c+a}+\dfrac{c^2}{a+b}\ge\dfrac{a+b+c}{2}\) (đpcm)
Dấu "=" xảy ra khi \(a=b=c\)
b.
Ta có:
\(a^2+bc\ge2\sqrt{a^2bc}=2\sqrt{ab.ac}\Rightarrow\dfrac{1}{a^2+bc}\le\dfrac{1}{2\sqrt{ab.ac}}\le\dfrac{1}{4}\left(\dfrac{1}{ab}+\dfrac{1}{ac}\right)\)
Tương tự: \(\dfrac{1}{b^2+ac}\le\dfrac{1}{4}\left(\dfrac{1}{ab}+\dfrac{1}{bc}\right)\) ; \(\dfrac{1}{c^2+ab}\le\dfrac{1}{4}\left(\dfrac{1}{ac}+\dfrac{1}{bc}\right)\)
Cộng vế với vế:
\(\dfrac{1}{a^2+bc}+\dfrac{1}{b^2+ac}+\dfrac{1}{c^2+ab}\le\dfrac{1}{2}\left(\dfrac{1}{ab}+\dfrac{1}{bc}+\dfrac{1}{ca}\right)=\dfrac{a+b+c}{2abc}\)
Dấu "=" xảy ra khi \(a=b=c\)
e)
\(\dfrac{a^2+b^2+c^2}{3}\ge\left(\dfrac{a+b+c}{3}\right)^2\)
\(\Leftrightarrow3\left(a^2+b^2+c^2\right)\ge a^2+b^2+c^2+2\left(ab+bc+ca\right)\)
\(\Leftrightarrow2\left(a^2+b^2+c^2\right)\ge2\left(ab+bc+ac\right)\)
\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2ac-2bc\ge0\)
\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(a^2-2ac+c^2\right)+\left(b^2-2bc+c^2\right)\ge0\)
\(\Leftrightarrow\left(a-b\right)^2+\left(a-c\right)^2+\left(b-c\right)^2\ge0\) ( luôn đúng)
=> ĐPCM
\(\dfrac{a^2+b^2}{b^2+c^2}\)
\(=\dfrac{a^2+ac}{ac+c^2}\)(vì b2=ac)
\(=\dfrac{a\left(a+c\right)}{c\left(a+c\right)}\)(đặt a,c ra ngoài)
\(=\dfrac{a}{c}\)(rút gọn a+c)
Ta có: \(\dfrac{a^2+ac}{ac+c^2}=\dfrac{a\left(a+c\right)}{c\left(a+c\right)}=\dfrac{a}{c}\)
Vậy \(\dfrac{a^2+b^2}{b^2+c^2}=\dfrac{a}{c}\)