K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 1 2016

Bài 1

a) A = 2^0 + 2^1 + 2^2 +...+ 2^50

2A=2^1+2^2+2^3+...+2^51

2A-A=(2^1+2^2+2^3+...+2^51)-(2^0 + 2^1 + 2^2 +...+ 2^50)

A=(2^1-2^1)+(2^2-2^2)+...+(2^50-2^50)+(2^51-2^1)

A=0+0+...+0+(2^51-2^1)

A=2^51-2^1

b)B = 5 + 5^2 + 5^3 +...+ 5^99 + 5^100

5B=5^2+5^3+5^4+...+5^100+5^101

5B-B=(5^2+5^3+5^4+...+5^100+5^101)-( 5 + 5^2 + 5^3 +...+ 5^99 + 5^100)

4B=(5^2-5^2)+(5^3-5^3)+...+(5^100-5^100)+(5^101-5)

4B=0+0+...+0+(5^101-5)

4B=5^101-5

B=(5^101-5)/4

c)C = 3 - 3^2 + 3^3 - 3^4 +...+ 3^2009 - 3 ^2010

3C=3^2-3^3+3^4-3^5+...+3^2010-3^2011

3C-C=(3^2-3^3+3^4-3^5+...+3^2010-3^2011)-(3 - 3^2 + 3^3 - 3^4 +...+ 3^2009 - 3 ^2010)

...............................................!!!!!!!!!!!!!!!!!!!!!!!!

Bài 2

8(mình k0 chắc)

6 tháng 1 2016

Làm bài 1 cũng đc rồi. Cảm ơn bạn nhiều

24 tháng 7 2017

\(A=2^0+2^1+2^2\)\(+2^3+...+\)\(2^{50}\)

\(2A=2+2^2+2^3+...+2^{51}\)

\(2A-A=A=2^{51}-2^0\)

\(B=5+5^2+5^3+...+5^{99}+5^{100}\)

\(5B=5^2+5^3+5^4+...+5^{100}+5^{101}\)

\(5B-B=4B=5^{101}-5\)

\(B=\frac{5^{101}-5}{4}\)

\(C=3-3^2+3^3-3^4+...+\)\(3^{2007}-3^{2008}+3^{2009}-3^{2010}\)

\(3C=3^2-3^3+3^4-3^5+...-3^{2008}+3^{2009}-3^{2010}+3^{2011}\)

\(3C+C=4C=3^{2011}+3\)

\(C=\frac{3^{2011}+3}{4}\)

\(S_{100}=5+5\times9+5\times9^2+5\times9^3+...+5\times9^{99}\)

\(S_{100}=5\times\left(1+9+9^2+9^3+...+9^{99}\right)\)

\(9S_{100}=5\times\left(9+9^2+9^3+...+9^{99}+9^{100}\right)\)

\(9S_{100}-S_{100}=8S_{100}=5\times\left(9^{100}-1\right)\)

\(S_{100}=\frac{5\times\left(9^{100}-1\right)}{8}\)

24 tháng 10 2023

+23+...+250

2�=2+22+23+...+251

2�−�=�=251−20

�=5+52+53+...+599+5100

5�=52+53+54+...+5100+5101

5�−�=4�=5101−5

�=5101−54

�=3−32+33−34+...+32007−32008+32009−32010

3�=32−33+34−35+...−32008+32009−32010+32011

3�+�=4�=32011+3

�=32011+34

�100=5+5×9+5×92+5×93+...+5×999

�100=5×(1+9+92+93+...+999)

9�100=5×(9+92+93+...+999+9100)

9�100−�100=8�100=5×(9100−1)

�100=5×(9100−1)8

4 tháng 7 2023

a) A = 1 + 2 + 3 + 4+... + 50;

Tổng A có 50 số hạng nên A = (1 + 50).50:2 = 1275,

b) B = 2 + 4 + 6 + 8 + ...+100;

Số số hạng của tổng B là: (100 - 2): 2+1 = 50 (số)

Do đó B = (2 +100).50 : 2 = 2550.

c) C = 1 + 3 + 5 + 7 +... + 99;

Số số hạng của tổng C là: (99 - 1): 2 +1 = 50 (số)

Do đó C = (1 + 99). 50 : 2 = 2500.

4 tháng 7 2023

 

d = 2 + 5 + 8 + 11 .... 98 

= ( 92 - 2 ) : 3 + 1 = 33 

= 33 . ( 98 + 2 ) : 2 

 = 1650

tick cho tớ với

7 tháng 12 2020

bạn viết thế này khó nhìn quá

26 tháng 11 2021

nhìn hơi đau mắt nhá bạn hoa mắt quá

21 tháng 6 2019

1,

a) 1^3 + 2^3 + ... + 10^3 = ( x+1) ^2

   ( 1+2+3+4+5+...+10 ) ^ 2 = ( x+1) ^2 

   \(\left(\frac{10\times11}{2}\right)^2\)= ( x + 1 ) ^2

     55^2 = ( x+1 ) ^2 

    => x+1= 55 hoặc x + 1 = -55

         x = 54            x = -56

      Vậy : x = 54 hoặc x = -56

b,   1+3+5+...+99 = ( x-2 )^2

     Đặt 1+3+5+...+99 là : A

     => Số các số hạng của A là : ( 99-1 ) : 2 + 1 = 50

     => A = ( 1+99 ) x 50 :2

          A = 2500

    Ta có : 2500 = ( x-2)^2

   => (x-2)^2 = 50^2 hoặc (x-2)^2 = (-50)^2

   =>  x-2=50                   x - 2 = -50

         x = 52                    x = -48

Vậy : x = 52 hoặc x = -48

2, 

 a)A = 2^0 + 2^1 + 2^2 + ...+2^2006

    2A = 2^1 + 2^2 + ... + 2^2007

    2A - A = ( 2^1 + 2^2 + ... + 2^2007 ) - ( 2^0 + 2^1 + ... + 2^2006 )

     A = 2^2007 - 2^0

    A = 2^2007 - 1 

Phần b Nhân với 3 làm tương tự

Phần c nhân với 4 lm tương tự

Phần d nhân với 5 làm tương tự

< Chúc bn hok tốt > nhớ k cho mik nhé

21 tháng 6 2019

b1:

a)=3(1+2+3+4+5+6+7+8+9+10)

=3.55

=165

b)ta xét vế 1:

số các số hạng ở vế 1 là :(99-1):2+1=50 số

tổng số các số hạng ở vế 1 là:(1+99).(50:2)=250

ta có:(x-2).2=250

x-2=250:2

x-2=125

x=127

b2:

A=2(0+1+2+...+2006)

A=2 {[(2006+1):2].(2006+0)}

A=2(1004+(1003.2006))

A=4014044

B=3(1+2+3+...+100)

B=3((100:2).(100+1))

B=3.5050

B=15150

C=4(1+2+...+n)

C=4k(chứ ts đây mik chịu,thông cảm bn nhé!)

D=5(1+2+...+2000)

D=5((2000:2).(2000+1))

D=10005000

13 tháng 7 2016

A=-2/3

B=1

13 tháng 8 2023

a) \(A=\left(\dfrac{x}{x+3}-\dfrac{2}{x-3}+\dfrac{x^2-1}{9-x^2}\right):\left(2-\dfrac{x+5}{x+3}\right)\) (ĐK: \(x\ne\pm3\))

\(A=\left[\dfrac{x\left(x-3\right)}{\left(x+3\right)\left(x-3\right)}-\dfrac{2\left(x+3\right)}{\left(x+3\right)\left(x-3\right)}-\dfrac{x^2-1}{\left(x+3\right)\left(x-3\right)}\right]:\left(2+\dfrac{x+5}{x+3}\right)\)

\(A=\dfrac{x^2-3x-2x-6-x^2+1}{\left(x+3\right)\left(x-3\right)}:\dfrac{2\left(x+3\right)-\left(x+5\right)}{x+3}\)

\(A=\dfrac{-5x-5}{\left(x+3\right)\left(x-3\right)}\cdot\dfrac{x+3}{x+1}\)

\(A=\dfrac{-5\left(x+1\right)\left(x+3\right)}{\left(x+3\right)\left(x-3\right)\left(x+1\right)}\)

\(A=\dfrac{-5}{x-3}\)

b) Ta có: \(\left|x\right|=1\)

TH1: \(\left|x\right|=-x\) với \(x< 0\)

Pt trở thành:

\(-x=1\) (ĐK: \(x< 0\)

\(\Leftrightarrow x=-1\left(tm\right)\)

Thay \(x=-1\) vào A ta có:

\(A=\dfrac{-5}{x-3}=\dfrac{-5}{-1-3}=\dfrac{5}{4}\)

TH2: \(\left|x\right|=x\) với \(x\ge0\)

Pt trở thành:

\(x=1\left(tm\right)\) (ĐK: \(x\ge0\)

Thay \(x=1\) vào A ta có:

\(A=\dfrac{-5}{x-3}=\dfrac{-5}{1-2}=\dfrac{5}{2}\)

c) \(A=\dfrac{1}{2}\) khi:

\(\dfrac{-5}{x-3}=\dfrac{1}{2}\)

\(\Leftrightarrow-10=x-3\)

\(\Leftrightarrow x=-10+3\)

\(\Leftrightarrow x=-7\left(tm\right)\)

d) \(A\) nguyên khi:

\(\dfrac{-5}{x-3}\) nguyên

\(\Rightarrow x-3\inƯ\left(-5\right)\)

\(\Rightarrow x\in\left\{8;-2;2;4\right\}\)

a: \(A=\left(\dfrac{x}{x+3}-\dfrac{2}{x-3}+\dfrac{x^2-1}{9-x^2}\right):\left(2-\dfrac{x+5}{x+3}\right)\)

\(=\dfrac{x\left(x-3\right)-2\left(x+3\right)-x^2+1}{\left(x-3\right)\left(x+3\right)}:\dfrac{2x+6-x-5}{x+3}\)

\(=\dfrac{x^2-3x-2x-6-x^2+1}{\left(x-3\right)\left(x+3\right)}\cdot\dfrac{x+3}{x+1}\)

\(=\dfrac{-5x-5}{\left(x-3\right)}\cdot\dfrac{1}{x+1}=\dfrac{-5}{x-3}\)

b: |x|=1

=>x=-1(loại) hoặc x=1(nhận)

Khi x=1 thì \(A=\dfrac{-5}{1-3}=-\dfrac{5}{-2}=\dfrac{5}{2}\)

c: A=1/2

=>x-3=-10

=>x=-7

d: A nguyên

=>-5 chia hết cho x-3

=>x-3 thuộc {1;-1;5;-5}

=>x thuộc {4;2;8;-2}

29 tháng 3 2022

yggucbsgfuyvfbsudy

30 tháng 3 2022

????????