Cho hàm số y= f(x) xác định với mọi x thuộc Q và có tính chất:
f (x1*x2) = x1* f(x2) (x1,x2 thuộc Q)
Chứng minh rằng: Nếu f(1) = a (a khác 0) thì y= f(x) = a*x
cố gắng giúp nhé! Chiều mai mình kiểm tra rồi
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có : \(f\left(x_1+x_2\right)=a\left(x_1+x_2\right)=ax_1+ax_2=f\left(x_1\right)+f\left(x_2\right)\)
b) Ta có : \(f\left(kx\right)=a\cdot k\cdot x=k\cdot ax=k\cdot f\left(x\right)\)
Lời giải:
$f(x_1)-f(x_2)=2018mx_1-2018mx_2=2018m(x_1-x_2)$
$=f(x_1-x_2)$ (đpcm)
$f(kx)=2018m(kx)=k.2018mx=kf(x)$ (đpcm)
Theo c) \(f\left(\frac{5}{7}\right)=f\left(\frac{2}{7}+\frac{3}{7}\right)=f\left(\frac{2}{7}\right)+f\left(\frac{3}{7}\right)\)
\(f\left(\frac{2}{7}\right)=f\left(\frac{1}{7}+\frac{1}{7}\right)=f\left(\frac{1}{7}\right)+f\left(\frac{1}{7}\right)=2.f\left(\frac{1}{7}\right)\)
\(f\left(\frac{3}{7}\right)=f\left(\frac{1}{7}+\frac{2}{7}\right)=f\left(\frac{1}{7}\right)+f\left(\frac{2}{7}\right)=f\left(\frac{1}{7}\right)+2f\left(\frac{1}{7}\right)=3.f\left(\frac{1}{7}\right)\)
\(\implies\)\(f\left(\frac{5}{7}\right)=5.f\left(\frac{1}{7}\right)\) (1)
Theo b) \(f\left(\frac{1}{7}\right)=\frac{1}{7^2}.f\left(7\right)\) (2)
Theo c) \(f\left(7\right)=f\left(3+4\right)=f\left(3\right)+f\left(4\right)\)
\(=2.f\left(3\right)+f\left(1\right)\)
\(=6.f\left(1\right)+f\left(1\right)\)
\(=7.f\left(1\right)\)
Theo a)\(f\left(1\right)=1\)\(\implies\)\(f\left(7\right)=7\) (3)
Từ (1);(2);(3)
\(\implies\) \(f\left(\frac{5}{7}\right)=\frac{5}{7}\)
bài này dễ ko bảo