Tìm x, biết:
\(\left(x^2-8\right)\left(\sqrt{x}-5\right)=0\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: ĐKXĐ: \(x\in R\)
\(\sqrt{\left(2x+3\right)^2}=5\)
=>|2x+3|=5
=>\(\left[{}\begin{matrix}2x+3=5\\2x+3=-5\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x=2\\2x=-8\end{matrix}\right.\)
=>\(\left[{}\begin{matrix}x=1\left(nhận\right)\\x=-4\left(nhận\right)\end{matrix}\right.\)
b: ĐKXĐ: \(x\in R\)
\(\sqrt{9\left(x-2\right)^2}=18\)
=>\(\sqrt{9}\cdot\sqrt{\left(x-2\right)^2}=18\)
=>\(3\cdot\left|x-2\right|=18\)
=>\(\left|x-2\right|=6\)
=>\(\left[{}\begin{matrix}x-2=6\\x-2=-6\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=8\left(nhận\right)\\x=-4\left(nhận\right)\end{matrix}\right.\)
c: ĐKXĐ: x>=2
\(\sqrt{9x-18}-\sqrt{4x-8}+3\sqrt{x-2}=40\)
=>\(3\sqrt{x-2}-2\sqrt{x-2}+3\sqrt{x-2}=40\)
=>\(4\sqrt{x-2}=40\)
=>\(\sqrt{x-2}=10\)
=>x-2=100
=>x=102(nhận)
d: ĐKXĐ: \(x\in R\)
\(\sqrt{4\left(x-3\right)^2}=8\)
=>\(\sqrt{\left(2x-6\right)^2}=8\)
=>|2x-6|=8
=>\(\left[{}\begin{matrix}2x-6=8\\2x-6=-8\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x=14\\2x=-2\end{matrix}\right.\)
=>\(\left[{}\begin{matrix}x=7\left(nhận\right)\\x=-1\left(nhận\right)\end{matrix}\right.\)
e: ĐKXĐ: \(x\in R\)
\(\sqrt{4x^2+12x+9}=5\)
=>\(\sqrt{\left(2x\right)^2+2\cdot2x\cdot3+3^2}=5\)
=>\(\sqrt{\left(2x+3\right)^2}=5\)
=>|2x+3|=5
=>\(\left[{}\begin{matrix}2x+3=5\\2x+3=-5\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x=2\\2x=-8\end{matrix}\right.\)
=>\(\left[{}\begin{matrix}x=1\left(nhận\right)\\x=-4\left(nhận\right)\end{matrix}\right.\)
f: ĐKXĐ:x>=6/5
\(\sqrt{5x-6}-3=0\)
=>\(\sqrt{5x-6}=3\)
=>\(5x-6=3^2=9\)
=>5x=6+9=15
=>x=15/5=3(nhận)
a: \(\sqrt{\left(x+1\right)^2}=5\)(ĐKXĐ: \(x\in R\))
=>|x+1|=5
=>\(\left[{}\begin{matrix}x+1=5\\x+1=-5\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=4\left(nhận\right)\\x=-6\left(nhận\right)\end{matrix}\right.\)
b: Sửa đề: \(5\sqrt{9x-9}-\sqrt{4\left(x-1\right)}+\sqrt{36\left(x-1\right)}-18=0\)
ĐKXĐ: x>=1
\(PT\Leftrightarrow5\cdot3\sqrt{x-1}-2\sqrt{x-1}+6\sqrt{x-1}-18=0\)
=>\(15\sqrt{x-1}-2\sqrt{x-1}+6\sqrt{x-1}=18\)
=>\(19\sqrt{x-1}=18\)
=>\(\sqrt{x-1}=\dfrac{18}{19}\)
=>\(x-1=\left(\dfrac{18}{19}\right)^2=\dfrac{324}{361}\)
=>\(x=\dfrac{324}{361}+1=\dfrac{324+361}{361}=\dfrac{685}{361}\)
Lời giải:
a. PT $\Leftrightarrow |x+1|=5$
$\Leftrightarrow x+1=\pm 5\Leftrightarrow x=4$ hoặc $x=-6$
b. ** Sửa $x-9$ thành $x-1$
ĐKXĐ: $x\geq 1$
PT $\Leftrightarrow 5\sqrt{x-1}-2\sqrt{x-1}+6\sqrt{x-1}-18=0$
$\Leftrightarrow (5-2+6)\sqrt{x-1}=18$
$\Leftrightarrow 9\sqrt{x-1}=18$
$\Leftrightarrow \sqrt{x-1}=2$
$\Leftrightarrow x-1=4$
$\Leftrightarrow x=5$ (tm)
1) (x−1):0,16=−9:(1−x)
\(\Rightarrow\)(x-1):0,16= 9:(-1):(x-1)
\(\Rightarrow\)(x-1):0,16=9:(x-1)
\(\Rightarrow\)(x-1).(x-1)= 9. 0,16
\(\Rightarrow\)(x-1)\(^2\)= 1,44=1,2\(^2\)=(-1,2)\(^2\)
\(\Rightarrow\)x-1=1,2\(\Rightarrow\)x=2,2
hoặc x-1= -1,2\(\Rightarrow\)x= -0,2
Vậy x =2,2 ; x=0,2
...............................
\(A=2\left|2-\sqrt{5}\right|-\dfrac{8\left(3+\sqrt{5}\right)}{\left(3-\sqrt{5}\right)\left(3+\sqrt{5}\right)}\)
\(=2\left(\sqrt{5}-2\right)-\dfrac{8\left(3+\sqrt{5}\right)}{4}=2\sqrt{5}-4-2\left(3+\sqrt{5}\right)\)
\(=2\sqrt{5}-4-6-2\sqrt{5}=-10\)
\(B=\left(\dfrac{2\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}-\dfrac{\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\right):\left(\dfrac{\sqrt{x}-2+2}{\sqrt{x}-2}\right)\)
\(=\left(\dfrac{\sqrt{x}+2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\right):\left(\dfrac{\sqrt{x}}{\sqrt{x}-2}\right)\)
\(=\dfrac{1}{\sqrt{x}-2}.\dfrac{\sqrt{x}-2}{\sqrt{x}}=\dfrac{1}{\sqrt{x}}\)
Tìm giá trị của x và y biết rằng: \(\left| x \right| = \sqrt 5 \) và \(\left| {y - 2} \right| = 0\).
+) \(\left| x \right| = \sqrt 5 \Rightarrow x = \sqrt 5 \) hoặc \(x = - \sqrt 5 \)
+) \(\left| {y - 2} \right| = 0 \Rightarrow y - 2 = 0 \Rightarrow y = 2\).
Vậy \(x \in \{\sqrt 5; -\sqrt 5\}; y=2. \)
\(\Leftrightarrow\left[{}\begin{matrix}x=2\sqrt{2}\\x=-2\sqrt{2}\\x=25\end{matrix}\right.\)
Cảm ơn anh nha