K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 1 2016

mik nghĩ là 8 hoặc 3

 

19 tháng 11 2023

 Ta nhận thấy một số có tận cùng là \(x\) thì khi lũy thừa lên mũ \(4k+1\left(k\inℕ\right)\) thì số nhận được cũng sẽ có tận cùng là \(x\). (*)

 Thật vậy, giả sử \(N=\overline{a_0a_1a_2...a_n}\). Khi đó \(N^{4k+1}=\left(\overline{a_0a_1a_2...a_n}\right)^{4k+1}\) \(=\left(\overline{a_0a_1a_2...a_{n-1}0}+a_n\right)^{4k+1}\) \(=a_n^{4k+1}\) nên ta chỉ cần xét số dư của các số từ 0 đến 9 lũy thừa với số mũ \(4k+1\).

 Dễ nhận thấy nếu \(a_n\in\left\{0,1,5,6\right\}\) thì \(a_n^{4k+1}\) sẽ có chữ số tận cùng là \(a_n\).

 Nếu \(a_n\in\left\{3,7,9\right\}\) thì để ý rằng \(3^4=9^2=81;7^4=2401\) đều có tận cùng là 1 nên hiển nhiên \(a_n^{4k}=\left(a_n^4\right)^k\) có tận cùng là 1. Do đó nếu nhân thêm \(a_n\) thì \(a_n^{4k+1}\) có chữ số tận cùng là \(a_n\).

 Nếu \(a_n\in\left\{2,4,8\right\}\) thì do \(2^4=16;4^4=256;8^4=4096\) đều có chữ số tận cùng là 6 \(\Rightarrow a_n^{4k}\) có chữ số tận cùng là 6. Khi nhân thêm \(a_n\) vào thì bộ \(\left(a_n;a_n^{4k+1}\right)\) sẽ là \(\left(2;2\right);\left(4;4\right);\left(8;8\right)\)

 Vậy (*) đã được chứng minh.

 \(\Rightarrow\) S có chữ số tận cùng là \(2+3+4+...+4\) (tới đây bạn chỉ cần đếm xem có bao nhiêu trong mỗi chữ số từ 0 đến 9 xuất hiện trong tổng trên là xong nhé)

\(a_n^{4k}\)

3 tháng 2 2020

3S = 3+32+33+.....+350

3S-S=[3+32+33+.....+350 ] - [1+3+32+....+349 ]

2S=350-1

S=[ 350-1 ]:2

3 tháng 2 2020

Tính S mình cũng biết, nhưng mình hỏi tìm tận cùng cơ mà?

13 tháng 3 2016

ta có:3S=3+32+....+350

          3S-S=(3+32+......+350)-(1+3+....+349)

          2S=350-1

             S=(350-1):2

ta có:(350-1):2=(348.32-1):2=[(34)12.9-1]:2=(8112.9-1):2=(.....9 -1):2=.....8:2=.....4

​vậy S có chữ số tận cùng là 4

K MK NHA BẠN

bạn trả lời giúp mình câu hỏi này với , mình đang rất gấp , đè bài y như thế này

31 tháng 1 2016

ta co: S=1+3+32+33+...+348+349

             S=(1+3)+(32+33)+...+(348+349)

             S=4+32.(1+3)+...+348.(1+3)

          S=4+4.(32+...+348)

       Vi 4 chia het cho 4

=>S chia het cho 4

 

24 tháng 10 2018

các bạn trả lời nhanh câu hỏi trong hôm nay nha

24 tháng 10 2018

\(S=1+3^2+3^3+3^4+...+3^{48}+3^{49}\)

\(=1+\left(3^2+3^3+3^4+3^5\right)+...+\left(3^{46}+3^{47}+3^{48}+3^{49}\right)\)

\(=1+3^2\left(1+3+9+27\right)+...+3^{46}\left(1+3+9+27\right)\)

\(=1+3^2.30+...+3^{46}.30\)

\(=1+30.\left(3^2+3^6+...+3^{42}+3^{46}\right)\)

Do \(30.\left(3^2+3^6+...+3^{42}+3^{46}\right)\)có chữ số tận cùng là 0

Nên \(S=1+30.\left(3^2+3^6+...+3^{42}+3^{46}\right)\)có tận cùng là 1

29 tháng 9 2018

a) \(S=1+3+3^2+3^3+...+3^{49}\)

\(=\left(1+3\right)+\left(3^2+3^3\right)+...+\left(3^{48}+3^{49}\right)\)

\(=1\left(1+3\right)+3^2\left(1+3\right)+...+3^{48}\left(1+3\right)\)

\(=1.4+3^2.4+...+3^{48}.4\)

\(=\left(3+1\right)\left(1+3^2+...3^{48}\right)=4\left(1+3^2+...+3^{48}\right)⋮4^{\left(đpcm\right)}\)

b) Ta có: \(S=1+3+3^2+3^3+...+3^{49}\)

\(3S=3+3^2+3^3+...+3^{49}+3^{50}\)

\(3S-S=2S=3^{50}-1\Rightarrow S=\frac{3^{50}-1}{2}\)

Ta thấy: \(3^{50}=3^{4.12}.3^2=\left(3^4\right)^{12}.3^2=81^{12}.9=...9\) (tận cùng là 9)

Suy ra \(3^{50}-1=\left(...9\right)-1=...8\) (tận cùng là 8)

Suy ra \(\Rightarrow S=\frac{3^{50}-1}{2}=\frac{\left(...8\right)}{2}=...4\Rightarrow S\) tận cùng là 4

24 tháng 10 2018

a) \(S=1+3+3^2+3^3+...+3^{49}\)

\(S=\left(1+3\right)+\left(3^2+3^3\right)+....+\left(3^{48}+3^{49}\right)\)

\(S=4+\left(3^2.1+3^2.3\right)+....+\left(3^{48}.1+3^{48}.3\right)\)

\(S=4+3^2.\left(1+3\right)+...+3^{48}.\left(1+3\right)\)

\(S=1.4+3^2.4+...+3^{48}.4\)

\(S=\left(1+3^2+...+3^{48}\right).4⋮4\)

5 tháng 9 2023

1) \(S=2.2.2..2\left(2023.số.2\right)\)

\(\Rightarrow S=2^{2023}=\left(2^{20}\right)^{101}.2^3=\overline{....6}.8=\overline{.....8}\)

2) \(S=3.13.23...2023\)

Từ \(3;13;23;...2023\) có \(\left[\left(2023-3\right):10+1\right]=203\left(số.hạng\right)\)

\(\) \(\Rightarrow S\) có số tận cùng là \(1.3^3=27\left(3^{203}=\left(3^{20}\right)^{10}.3^3\right)\)

\(\Rightarrow S=\overline{.....7}\)

3) \(S=4.4.4...4\left(2023.số.4\right)\)

\(\Rightarrow S=4^{2023}=\overline{.....4}\)

4) \(S=7.17.27.....2017\)

Từ \(7;17;27;...2017\) có \(\left[\left(2017-7\right):10+1\right]=202\left(số.hạng\right)\)

\(\Rightarrow S\) có tận cùng là \(1.7^2=49\left(7^{202}=7^{4.50}.7^2\right)\)

\(\Rightarrow S=\overline{.....9}\)

6 tháng 9 2023

Bài 1:

S = 2 x 2 x 2 x 2 x 2 x...x 2 (2023 chữ số 2)

Nhóm 4 thừa số 2 vào một nhóm thì vì:

2023 : 4 = 505 dư 3 

Vậy

S = (2x2x2x2) x...x (2 x 2 x 2 x 2) x 2 x 2 x 2 có 503 nhóm (2x2x2x2)

S = \(\overline{..6}\) x ...x \(\overline{..6}\) x 8

S = \(\overline{..6}\) x 8

S = \(\overline{..8}\)

                

       

6 tháng 9 2023

             Bài 2:

S = 3 x 13 x 23 x...x 2023

Xét dãy số: 3; 13; 23;..;2023

Dãy số trên là dãy số cách đều với khoảng cách là: 13 - 3 = 10

Số số hạng của dãy số trên là: (2023 - 3):10 + 1 = 203 (số hạng)

 Vậy chữ số tận cùng của S bằng chữ số tận cùng của A.

  Với A = 3 x 3 x 3 x...x 3 (203 thừa số 3)

  Nhóm 4 thừa số 3 thành 1 nhóm, vì 203 : 4 = 50 (dư 3)

  A = (3 x 3 x 3 x 3)x...x(3x3x3x3)x3x3x3 có 50 nhóm (3x3x3x3)

   A = \(\overline{..1}\) x...x \(\overline{..1}\) x 27

   A = \(\overline{..7}\)

   

 

 

 

11 tháng 2 2016

a) S = 1 + 3 + 32 +...+ 348 + 349

=> 3S = 3 + 32 + 33 +...+ 348 + 349 + 350

=> 3S - S = 350 - 1

=> S = \(\frac{3^{50}-1}{2}\)

       Vậy S = \(\frac{3^{50}-1}{2}\)

b) Câu này hơi khó!