K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 12 2018

Ta có: góc AB’M là góc ngoài của tam giác MB’C

Nên ∠(BMC) + ∠C= (AB'M) ⇒ ∠(AB'M) > ∠C

HQ
Hà Quang Minh
Giáo viên
21 tháng 9 2023

AD nằm trên tia phân giác của góc A

23 tháng 12 2023

em lớp 6 ko bt làm

 

23 tháng 12 2023

em lớp 5 cũng ko biết làm

24 tháng 5 2018

a, 2 tam giác ABC và tam giác AB'C' bằng nhau theo TH (c.g.c)

b, cặp góc: góc BAC và B'AC' ; góc B và B' ; góc C và C'

Cặp cạnh : AB=AB' ;AC =AC' ; BC = B'C'

chúc bạn học tốt !!! :)) :))

a: Xét ΔABD và ΔAMD có

AB=AM

góc BAD=góc MAD

AD chung

Do đó; ΔABD=ΔAMD

b: Xét ΔDBN và ΔDMC có

góc DBN=góc DMC

DB=DM

góc BDN=góc MDC

Do đó; ΔDBN=ΔDMC

=>BN=MC

c: Xét ΔANC có AB/BN=AM/MC

nên BM//CN

15 tháng 8 2019

b. Giả sử góc ngoài tại đỉnh B của tam giác ABC là ∠(xBC). Ta có:

∠(xBC) + ∠(ABD) = 180o ⇒ ∠(xBC) = 180o - ∠(ABD) (0.5 điểm)

∠(DEC) + ∠(AED) = 180o ⇒ ∠(DEC) = 180o - ∠(AED) (0.5 điểm)

Mà ∠(ABD) = ∠(AED) ( hai góc tương ứng vì ΔABD = ΔAED)(0.5 điểm)

 

Từ đó suy ra ∠(xBC) = ∠(DEC) (0.5 điểm)