Tìm n để:
n2+5 chia hết cho n+1
giải chi tiết
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Leftrightarrow n-1\in\left\{1;-1;3;-3\right\}\)
hay \(n\in\left\{2;0;4;-2\right\}\)
\(\Leftrightarrow x\left(x-1\right)+7⋮x-1\)
\(\Leftrightarrow x-1\in\left\{1;-1;7;-7\right\}\)
hay \(x\in\left\{2;0;8;-6\right\}\)
Cho g(x) = 0
x + 1 = 0
x = -1
Để f(x) chia hết cho g(x) thì x = -1 cũng là nghiệm của f(x)
Hay f(1) = 0
3.1² + 2.1² - 7.1 - m + 2 = 0
-2 - m + 2 = 0
m = 0
Vậy m = 0 thì f(x) chia hết cho g(x)
Giải chi tiết của em đây :
F(x) = 3x2 + 2x2 - 7x - m + 2
F(x) \(⋮\) x + 1 \(\Leftrightarrow\) F(x) \(⋮\) x - (-1)
Theo bezout ta có : F(x) \(⋮\) x - (-1) \(\Leftrightarrow\) F(-1) = 0
\(\Leftrightarrow\) 3(-1)2 + 2(-1)2 - 7.(-1) - m + 2 = 0
3 + 2 + 7 - m + 2 =0
14 - m = 0
m = 14
Kết luận với m = 14 thì F(x) chia hết cho x + 1
\(\Leftrightarrow n+1\in\left\{1;-1;3;-3\right\}\)
hay \(n\in\left\{0;-2;2;-4\right\}\)
Làm câu b trước, câu a đánh máy mệt lắm
n-1 chia hết cho n+5. n+5 chia hết cho n-1
Suy ra 2 số này là 2 số đối nhau khác 0
2 số đối nhau có tổng =0
(n+5)+(n-1)=0
n+5+n-1=0
2n+4=0
2n=-4
n=-2
Ta có: n-5 chia hết cho n-2
\(\Leftrightarrow\)(n-5) - (n-2) chia hết cho n-2
\(\Leftrightarrow\)3 chia hết cho n-2
\(\Leftrightarrow\)n-2 \(\in\)Ư(3)
\(\Leftrightarrow\)n-2 \(\in\){-1;1;-3;3}
Ta có bảng sau
n-2 | -1 | 1 | 3 | -3 |
n\(\in\)Z | 1 | 3 | 5 | -1 |
Vậy n\(\in\){1;3;5;-1}
4n - 5 chia hết cho n - 3
=> 4n - 12 + 7 chia hết cho n - 3
=> 4.(n - 3) + 7 chia hết cho n - 3
Mà 4.(n - 3) chia hết cho n - 3
=> 7 chia hết cho n - 3
=> n - 3 thuộc Ư(7) = {-7; -1; 1; 7}
=> n thuộc {-4; 2; 4; 10}.
Ta có: 4n-5 chia hết cho n-3
=>(4n-12)+12-5 chia hết cho n-3
=>4(n-3)+7 chia hết cho n-3
Mà 4(n-3) chia hết cho n-3
=>7 chia hết cho n-3
=>n-3 thuộc Ư(7)={1;7;-1;-7}
=> n thuộc {4;10;2;-4}
tick nha
(n+5)/(n+1)=[(n+1) +4]/(n+1)
=1 +4/(n+1)
chia hết khi VP là số tự nhiên
---> 4/(n+1) là số tự nhiên
--> n+1 bằng 1,2,4
---> n bằng 0, 1 , 3
và ngược lại
n-1 chia hêt cho n+5
=>n+5-6 chia hết cho n+5
=>6 chia hết cho n+5
=>n+5 thuộc Ư(6)={-1;1;-2;2;-3;3;-6;6}
=>n thuộc{-6;-4;-7;-3;-11;1}
n + 5 chia hết cho n - 1
=>n-1+6 chia hết cho n-1
=>6 chia hết cho n-1
=>n-1 thuộc Ư(6)={-1;1;-2;2;-3;3;-6;6}
=>n thuộc {0;2;-1;3;-2;4;-5;7}
( n + 5 ) \(⋮\)( n + 2 )
\(\Rightarrow\) [( n + 2 )+ 3] \(⋮\)( n + 2 )
Mà ( n + 2 ) \(⋮\)( n + 2 )
\(\Rightarrow\)3 \(⋮\)( n + 2 )
\(\Rightarrow\left(n+2\right)\inƯ\left(3\right)\)
\(\Rightarrow\)n+2 \(\in\){1;3}
\(\Rightarrow n\in\){ -1 ; 1 }
Vậy n \(\in\){ - 1 ; 1 } ( n = -1 là vì đề bài không bảo rằng tìm \(n\in N\))
P/s tham khảo nha
a, \(\frac{n+5}{n-2}\)=\(\frac{n-2}{n-2}\)+\(\frac{7}{n-2}\)=1+\(\frac{7}{n-2}\)=>7 chia hết cho n-2 => n-2 thuộc ước của 7 = (-1;-7;1;7) . Ta có :
n-2=-7=> n=-5 ; n-2=-1=>n=1;n-2=1=>n=3;n-2=7=>n=9.
vậy n=-5;-1;3;9 thì n+5 chia hết cho n-2
c, \(\frac{n^2+3}{n-1}\)=\(\frac{n^2-1}{n-1}\)+\(\frac{4}{n-1}\)=>4 chia hết cho n-1 .
Đến đây giải tương tự phần a , chúc bạn hóc tốt.
ta có:
n2+5 chia hết cho n+1 =>(n2-1)+6 chia hết cho n+1
=>(n2-12)+6 chia hết cho n+1
=>(n-1)(n+1)+6 chia hết cho n+1
vì (n-1)(n+1) chia hết cho n+1 => 6 chia hết cho n+1
=>n+1 thuộc ước của 6
=>n+1 thuộc {1;2;3;6}
ta có bảng sau:
n+1 1 2 3 6
n 0 1 2 5
vậy n thuộc {0;1;2;5}
0;2;5
bạn tự giaỉ chi tiết , dễ lắm....