K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 10 2018

a: Xét ΔADH vuông tại H và ΔCBK vuông tại K có 

AD=BC

\(\widehat{ADH}=\widehat{CBK}\)

Do đó: ΔADH=ΔCBK

Suy ra:AH=CK

Xét tứ giác AHCK có

AH//CK

AH=CK

Do đó: AHCK là hình bình hành

27 tháng 10 2021

b: Xét ΔADK vuông tại K và ΔCBH vuông tại H có 

AD=CB

\(\widehat{ADK}=\widehat{CBH}\)

Do đó: ΔADK=ΔCBH

Suy ra: DK=BH

Xét tứ giác BKDH có 

DK//BH

DK=BH

Do đó: BKDH là hình bình hành

27 tháng 10 2021

Biết hết không ạ em đang cần gấp.

 

30 tháng 3 2018

a) Ta chứng minh

 

b) Tương tự câu a ta chứng minh được  

Þ AD.AF =AK.AC (2)

b) Từ (1) ta có AB.AE = AC.AH (3)

Lấy (3) + (2) ta được AD.AF + AB.AE = AC2 (ĐPCM)

9 tháng 3 2021

a/ Xét tg vuông AHD và tg vuông AKB có 

\(\widehat{BAK}+\widehat{ABC}=90^o\)

\(\widehat{DAH}+\widehat{ADC}=90^o\)

Mà \(\widehat{ABC}=\widehat{ADC}\) (Hai góc đối của hbh)

\(\Rightarrow\widehat{DAH}=\widehat{BAK}\)

=> tg AHD đồng dạng với tg AKB \(\Rightarrow\frac{AH}{AK}=\frac{DA}{AB}\) mà AB = DC (hai cạnh đối của hbh) \(\Rightarrow\frac{AH}{AK}=\frac{DA}{DC}\left(dpcm\right)\)

b/ Ta có K và H đều nhìn AC dưới 1 góc 90 độ

=> Tứ giác AKCH là tứ giác nội tiếp đường tròn đường kính AC 

=> sđ \(\widehat{AKH}\) = sđ \(\widehat{ACH}\) = 1/2 sđ cung AH (Góc nội tiếp đường tròn) \(\Rightarrow\widehat{AKH}=\widehat{ACH}\left(dpcm\right)\)

31 tháng 8 2023

loading... a) Do BM là đường trung tuyến của ∆ABC (gt)

⇒ M là trung điểm của AC

Do D và B đối xứng qua M (gt)

⇒ M là trung điểm của BD

Tứ giác ABCD có:

M là trung điểm của AC (cmt)

M là trung điểm của BD (cmt)

⇒ ABCD là hình bình hành

b) Do ABCD là hình bình hành (cmt)

⇒ AB // CD

Mà DH ⊥ AB

⇒ DH ⊥ AC

c) Do ABCD là hình bình hành

⇒ AB // CD

Mà BK ⊥ CD

⇒ BK ⊥ AB

⇒ ∠KBH = 90⁰

Tứ giác BHDK có:

∠BKD = ∠KBH = ∠BHD = 90⁰

⇒ BHDK là hình chữ nhật

Mà M là trung điểm BD

⇒ M là trung điểm của HK

⇒ M, H, K thẳng hàng

Do đó chứng minh MH ⊥ MK là sai. Em xem lại đề ở câu c nhé

27 tháng 9 2018

Xem ở đây nha: 

Cho hình bình hành ABCD, Gọi H và K lần lượt là hình chiếu của A và C lên đường chéo BD. a) Chứng minh AHCK là hình bình hành. b) Gọi O là trung điểm của HK. Chứng minh ba điểm A, O, C thẳng hàng - Toán học Lớp 8 - Bài tập Toán học Lớp 8 - Giải bài tập Toán học Lớp 8 | Lazi.vn - Cộng đồng Tri thức & Giáo dục

27 tháng 9 2018

A B C D K H 1 1

Xét tam giác vuông ADH & tam giác vuông CKB:

AD = BC ( ABCD là hbh)

góc D1= góc B1 ( so le trong)

=> tam giác vuông = tam giác vuông CKB ( cạnh hyền - góc nhọn)

=> AH = CK ( 2 cạnh t/ứng)

Xét tứ giác AHCK :

AH = CK (cmt)

AH // CK ( cùng vuông góc vs BD)

=> AHCK là hình bình hành ( đn)

a: Xét ΔBMC vuông tại M và ΔDNC vuông tại N có

góc B=góc D

=>ΔBMC đồng dạng vớiΔDNC

b: Bạn ghi lại đề đi bạn

16 tháng 12 2021

a: Xét tứ giác ABCD có 

M là trung điểm của AC

M là trung điểm của BD

Do đó: ABCD là hình bình hành