Rút gọn các biểu thức: a + b a - b + a - b a + b v ớ i a ≥ 0 , b ≥ 0 v à a ≠ b
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Thay phân thức P vào biểu thức A rồi rút gọn chúng ta thu được A = u + v với điều kiện các biểu thức có nghĩa.
b) Tương tự a) ta có B = 1.
B1:
a, a+b+(-a)+b+a+(-c)+(-a)+(-c)=[a+(-a)+a+(-a)]+(b+b)+[(-c)+(-c)]=0+2.b+(-2).c
b, a+b+(-c)+a+(-b)+c+(-b)+(-c)+a+(-a)+b+c=[a+a+a+(-a)]+[b+(-b)+(-b)+b]+[(-c)+c+(-c)+c]=2.a+0+0=2a
B2:
N=(a+b)-(a-b)+(a+b)=a+b+(-a)+b+a+b=[a+(-a)+a)+(b+b+b)=a+3.b
NẾU CẬU KHÔNG HIỂU THÌ CỨ HỎI NHÉ!
rút gọn biểu thức
a,A=(a-b)-(a-b+c)
b,B=-(a+b+c)-(a+b-5)
A= (a-b)+(a+b-c)-(a-b-c)
A= a-b+a+b-c-a+b+c
A= a+b (Giản ước các số a-a; -b+b; -c+c)
Sử dụng tính chất phá ngoặc
A = (a - b) + (a + b - c) - (a - b - c)
A = a - b + a + b - c - a + b + c
A = (a + a - a) + (-b + b + b) + (-c + c)
A = a + b + 0 = a + b
Vậy biểu thức khi được rút gọn A = a + b
\(D=\left(a+b-c\right)-\left(a-b+c\right)+\left(b+c-a\right)-\left(a-b-c\right)\)
\(D=a+b-c-a+b-c+b+c-a-a+b+c\)
\(D=\left(a-a-a-a\right)+\left(b+b+b+b\right)+\left(c+c-c-c\right)\)
\(D=4b-3a\)
A = -{-(a + b) - [-(a - b) - (a + b)]}
= -{-a - b - [-a + b - a - b]}
= -[-a - b - (-2a)]
= -(-a - b + 2a)
= -(a - b)
= -a + b
a)
A= (-m+n-p)-(-m-n-p)
A= -m+n-p+m+n+p
A= (-m+m) +(n+n) + (-p+p)
A= 0+2n+0
A = 2n
Bài 1:
A = (-m + n - p) - (-m - n - p)
A = -m + n - p + m + n + p
A = (-m + m) + (n + n) - (p - p)
A = 2n
Với n = -1 => A = 2(-1) = -2
Bài 2:
A = (-2a + 3b - 4c) - (-2a -3b - 4c)
A = -2a + 3b - 4c + 2a + 3b + 4c
A = (-2a + 2a) + (3b + 3b) - (4c - 4c)
A = 6b
Với b = -1 => A = 6(-1) = -6
Bài 3:
a) A = (a + b) - (a - b) + (a - c) - (a + c)
A= a + b - a + b + a - c - a - c
A = (a - a + a - a) + (b + b) - (c + c)
A = 2(b - c)
b) B = (a + b - c) + (a - b + c) - (b + c - a) - (a - b - c)
B = a + b - c + a - b + c - b - c + a - a + b + c
B = (a + a + a - a) + (b - b - b + b) - (c - c + c - c)
B = 2a