K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 1 2017

Khi x= 9 ta có  A = 9 + 2 9 − 5 = 3 + 2 3 − 5 = − 5 2

18 tháng 12 2019

Với  x ≥ 0 , x ≠ 25  thì  B = 3 x + 5 + 20 − 2 x x − 15 = 3 x + 5 + 20 − 2 x x + 5 x − 5

= 3 x − 5 + 20 − 2 x x + 5 x − 5 = 3 x − 15 + 20 − 2 x x + 5 x − 5 = x + 5 x + 5 x − 5 = 1 x − 5

 (điều phải chứng minh)

9 tháng 8 2020

\(A=x+\left\{\left(x+5\right)-\left[\left(5-x\right)-\left(-x-3\right)\right]\right\}\)

\(=x+\left\{\left(x+5\right)-\left[5-x+x+3\right]\right\}\)

\(=x+\left\{\left(x+5\right)-\left(5+3\right)\right\}\)

\(=x+\left\{\left(x+5\right)-8\right\}\)

\(=x+\left\{x+5-8\right\}=x+\left\{x-3\right\}\)

\(=x+x-3=2x-3\)

9 tháng 8 2020

\(B=x.\left\{\left[-x-2-\left[x+\left(3-x\right)-\left(x+3\right)\right]\right]\right\}\)

\(=x.\left\{\left[-x-2-\left[x+3x-x-x-3\right]\right]\right\}\)

\(=x\left\{\left[-x-2-\left(4x-2x-3\right)\right]\right\}\)

\(=x\left\{\left[-x-2-\left(2x-3\right)\right]\right\}\)

\(=x\left\{-x-2-2x+3\right\}\)

\(=x\left(1-3x\right)=x-3x^2\)

a: Thay x=9 vào A, ta được:

\(A=\dfrac{3+2}{3-5}=\dfrac{5}{-2}=\dfrac{-5}{2}\)

\(B=\dfrac{3\sqrt{x}-15+20-2\sqrt{x}}{x-25}=\dfrac{\sqrt{x}+5}{x-25}=\dfrac{1}{\sqrt{x}-5}\)

b: Để \(A=B\cdot\left|x-4\right|\) thì \(\left|x-4\right|=\dfrac{A}{B}=\dfrac{\sqrt{x}+2}{\sqrt{x}-5}:\dfrac{1}{\sqrt{x}-5}=\sqrt{x}+2\)

\(\Leftrightarrow x-4=\sqrt{x}+2\)

\(\Leftrightarrow x-\sqrt{x}-6=0\)

=>x=9

17 tháng 6 2023

bạn ơi. Cho tớ hỏi là tại sao |x-4|= A/B hả bạn ?. Giải thích cho mình với

 

30 tháng 11 2021

b: \(B=\dfrac{x^2-3x+2x^2+6x-3x^2-9}{x^2-9}=\dfrac{3x-9}{\left(x-3\right)\left(x+3\right)}=\dfrac{3}{x+3}\)

30 tháng 11 2021

b: \(B=\dfrac{x^2-3x+2x^2+6x-3x^2-9}{\left(x-3\right)\left(x+3\right)}\)

\(=\dfrac{3x-9}{\left(x-3\right)\left(x+3\right)}=\dfrac{3}{x+3}\)

2 tháng 12 2021

\(a, x^3+5x^2-9x-45=0\\ \Leftrightarrow x^2\left(x+5\right)-9\left(x+5\right)=0\\ \Leftrightarrow\left(x-3\right)\left(x+3\right)\left(x+5\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=3\\x=-3\end{matrix}\right.\left(x\ne-5\right)\\ \text{Với }x=3\Leftrightarrow A=\dfrac{9-9}{3\left(3+5\right)}=0\\ \text{Với }x=-3\Leftrightarrow A=\dfrac{9-9}{3\left(-3+5\right)}=0\\ \text{Vậy }A=0\\ b,B=\dfrac{x^2-3x+2x^2+6x-3x^2-9}{\left(x-3\right)\left(x+3\right)}\\ B=\dfrac{3x-9}{\left(x-3\right)\left(x+3\right)}=\dfrac{3\left(x-3\right)}{\left(x-3\right)\left(x+3\right)}=\dfrac{3}{x+3}\)

17 tháng 6 2023

c,M =  \(\dfrac{A}{B}\) = \(\dfrac{\sqrt{x}-4}{\sqrt{x}+5}\) :  \(\dfrac{\sqrt{x}+3}{\sqrt{x}+5}\) 

   M =  \(\dfrac{A}{B}\) = \(\dfrac{\sqrt{x}-4}{\sqrt{x}+5}\) \(\times\) \(\dfrac{\sqrt{x}+5}{\sqrt{x}+3}\) 

   M =  \(\dfrac{A}{B}\) = \(\dfrac{\sqrt{x}-4}{\sqrt{x}+3}\) = \(\dfrac{\sqrt{x}+3-7}{\sqrt{x}+3}\)

 M = 1  - \(\dfrac{7}{\sqrt{x}+3}\) 

 M \(\in\) Z ⇔ 7 ⋮ \(\sqrt{x}\) + 3 vì \(\sqrt{x}\) ≥ 0 ⇒ \(\sqrt{x}\) + 3 ≥ 3 ⇒ 0< \(\dfrac{7}{\sqrt{x}+3}\) ≤ \(\dfrac{7}{3}\)

⇒ M Đạt giá trị nguyên lớn nhất ⇔ \(\dfrac{7}{\sqrt{x}+3}\) đạt giá trị nguyên nhỏ nhất ⇔ \(\dfrac{7}{\sqrt{x}+3}\) = 1 ⇔ \(\sqrt{x}\) + 3  = 7 ⇔ \(\sqrt{x}\) = 4 ⇔ \(x\) = 16 

Mnguyên(max)  = 1 - 1 = 0 xảy ra khi \(x\) = 16