K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 1 2016

dễ ợt!17 hoặc16 chứ mấy 

28 tháng 2 2016

17 - 5 < 3 hoặc là 16 - 5 < 3  cũng có thể 15-15<3  

 vậy 17,16,15 có thể trừ 15 và bé hơn 3

17 tháng 7 2021

undefined

17 tháng 7 2021

14a) \(M=\sqrt{9+4\sqrt{5}}-\sqrt{9-4\sqrt{5}}\)

\(=\sqrt{\left(\sqrt{5}\right)^2+2.\sqrt{2}.2+2^2}-\sqrt{\left(\sqrt{5}\right)^2-2.\sqrt{2}.2+2^2}\)

\(=\sqrt{\left(\sqrt{5}+2\right)^2}-\sqrt{\left(\sqrt{5}-2\right)^2}=\left|\sqrt{5}+2\right|-\left|\sqrt{5}-2\right|\)

\(=\sqrt{5}+2-\sqrt{5}+2=4\)

b) \(N=\sqrt{8-2\sqrt{7}}-\sqrt{8+2\sqrt{7}}\)

\(=\sqrt{\left(\sqrt{7}\right)^2-2.\sqrt{7}.1+1^2}-\sqrt{\left(\sqrt{7}\right)^2+2.\sqrt{7}.1+1^2}\)

\(=\sqrt{\left(\sqrt{7}-1\right)^2}-\sqrt{\left(\sqrt{7}+1\right)^2}=\left|\sqrt{7}-1\right|-\left|\sqrt{7}+1\right|\)

\(=\sqrt{7}-1-\sqrt{7}-1=-2\)

15a) \(P=\sqrt{11+6\sqrt{2}}-\sqrt{11-6\sqrt{2}}\)

\(=\sqrt{3^2+2.3.\sqrt{2}+\left(\sqrt{2}\right)^2}-\sqrt{3^2-2.3.\sqrt{2}+\left(\sqrt{2}\right)^2}\)

\(=\sqrt{\left(3+\sqrt{2}\right)^2}-\sqrt{\left(3-\sqrt{2}\right)^2}=\left|3+\sqrt{2}\right|-\left|3-\sqrt{2}\right|\)

\(=3+\sqrt{2}-3+\sqrt{2}=2\sqrt{2}\)

b) \(Q=\sqrt{17+12\sqrt{2}}+\sqrt{17-12\sqrt{2}}\)

\(=\sqrt{3^2+2.3.2\sqrt{2}+\left(2\sqrt{2}\right)^2}+\sqrt{3^2-2.3.2\sqrt{2}+\left(2\sqrt{2}\right)^2}\)

\(=\sqrt{\left(3+2\sqrt{2}\right)^2}+\sqrt{\left(3-2\sqrt{2}\right)^2}=\left|3+2\sqrt{2}\right|+\left|3-2\sqrt{2}\right|\)

\(=3+2\sqrt{2}+3-2\sqrt{2}=6\)

 

22 tháng 7 2016

Ta có:

6415 = (26)15 = 290

3218 = (25)18 = 290

Vì 290 = 290

=> 6415 = 3218

1: \(100-x^2=\left(10-x\right)\left(10+x\right)\)

2: \(b^2-a^2=\left(b-a\right)\left(b+a\right)\)

3: \(\left(3y\right)^2-\left(4x\right)^2=\left(3y-4x\right)\left(3y+4x\right)\)

16 tháng 9 2021

4. (x - 2)(x + 2) = x2 - 4

5. (2x - y)(2x + y) = 4x2 - y2

6. \(\left(\dfrac{1}{2}x+y\right)\left(\dfrac{1}{2}x-y\right)=\dfrac{1}{4}x^2-y^2\)

a) Thay m=3 vào hệ pt, ta được:

\(\left\{{}\begin{matrix}x+3y=3\\3x+4y=6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3x+9y=9\\3x+4y=6\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}5y=3\\x+3y=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{3}{5}\\x=3-3y=3-3\cdot\dfrac{3}{5}=\dfrac{6}{5}\end{matrix}\right.\)

Vậy: Khi m=3 thì hệ phương trình có nghiệm duy nhất là \(\left(x,y\right)=\left(\dfrac{6}{5};\dfrac{3}{5}\right)\)

15 tháng 5 2021

 làm câu b đc ko ạ

a) Thay m=3 vào hệ phương trình, ta được:

\(\left\{{}\begin{matrix}x+3y=3\\3x+4y=6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3x+9y=9\\3x+4y=6\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}5y=3\\x+3y=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{3}{5}\\x=3-3\cdot\dfrac{3}{5}=\dfrac{15}{5}-\dfrac{9}{5}=\dfrac{6}{5}\end{matrix}\right.\)

Vậy: \(\left(x,y\right)=\left(\dfrac{6}{5};\dfrac{3}{5}\right)\)

3 tháng 7 2021

a, \(\sqrt{15}+\sqrt{8}< \sqrt{16}+\sqrt{9}=4+3=7\)

\(\Rightarrow\sqrt{15}+\sqrt{8}< 7\)

b, \(\sqrt{10}+\sqrt{17}+1>\sqrt{9}+\sqrt{16}+1=3+4+1=8\)

\(\sqrt{61}< \sqrt{64}=8\)

\(\Rightarrow\sqrt{10}+\sqrt{17}+1>\sqrt{61}\)

c, \(\sqrt{10}+\sqrt{5}+1>\sqrt{9}+\sqrt{4}+1=3+2+1=6\)

\(\sqrt{35}< \sqrt{36}=6\)

\(\Rightarrow\sqrt{10}+\sqrt{5}+1>\sqrt{35}\)

19 tháng 1 2022

\(\dfrac{3.\left(-5\right)}{15.\left(-6\right)}=\dfrac{3.\left(-5\right)}{\left(-5\right)\left(-3\right)\left(-6\right)}=\dfrac{-1}{-6}=\dfrac{1}{6}\)