Cho hàm số y = f x liên tục trên ℝ và có bảng xét dấu của f x như sau
Tìm số cực trị của hàm số y = f x
A. 0
B. 1
C. 3
D. 2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Nhận thấy y' đổi dấu khi qua x = -3 và x = 2 nên hàm số có 2 điểm cực trị. ( x = 1 không phải là điểm cực trị vì y' không đổi dấu khi qua x = 1). Chọn C.
Đáp án D
Dựa vào bảng xét dấu ta thấy hàm số đổi dấu qua các điểm x = − 1 , x = 0 , x = 2 , x = 4 nên hàm số có 4 điểm cực trị.
Chọn A.
Phương pháp:
Điểm x = x0 là điểm cực trị của hàm số khi qua điểm đó f'(x) đổi dấu.
Cách giải :
Dựa vào BXD ta thấy hàm số có 4 điểm cực trị x = -1; x = 0; x = 2; x = 4.
Chú ý: Nhiều học sinh cho rằng x = 0 không phải là điểm cực trị do y' (0) ≠ 0. Lưu ý điều kiện f'(x0) = 0
chỉ là điều kiện cần để x = x0 là điểm cực trị của hàm số.
Vì hàm số xác định trên cả R và y' đổi dấu khi đi qua các điểm -2;-1;1;2 do đó hàm số có 4 điểm cực trị.
Chọn đáp án B.
Dựa vào bảng biến thiên ta thấy rằng f’(-2)=f’(1)=f’(3)=0.
f’(x)đổi dấu khi qua hai điểm x=-2; x=3 và f’(x) không đổi dấu khi qua điểm x=1 nên hàm số y=f(x) có hai diểm cực trị.
Đáp án A
Đáp án A
Ta thấy f’(x) đổi dấu khi đi qua 3 điểm x 1 , x 2 , x 3 nên hàm số có 3 cực trị
Đáp án D
Hàm số liên tục trên ℝ và đổi dấu tại x = -1 và x = 1 do đó đồ thị hàm số có 2 điểm cực trị.